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Abstract

We discuss an idea for collecting data in a relatively efficient manner. Our
point of view is Bayesian and information-theoretic: on any given trial,
we want to adaptively choose the input in such a way that the mutual in-
formation between the (unknown) state of the system and the (stochastic)
output is maximal, given any prior information (including data collected
on any previous trials). We prove a theorem that quantifies the effective-
ness of this strategy and give a few illustrative examples comparing the
performance of this adaptive technique to that of the more usual nonadap-
tive experimental design. For example, we are able to explicitly calculate
the asymptotic relative efficiency of the “staircase method” widely em-
ployed in psychophysics research, and to demonstrate the dependence of
this efficiency on the form of the “psychometric function” underlying the
output responses.

1 Introduction

One simple model of experimental design (we have neurophysiological experiments in
mind, but our results are general with respect to the identity of the system under study)
is as follows. We have some set X of input stimuli, and some knowledge of how the
system should respond to every stimulus, x, in X. This knowledge is summarized in the
form of a prior distribution, py(6), on some space © of models . A model is a set of
probabilistic input-output relationships: regular conditional distributions p(y|x, ) on Y,
the set of possible output responses, given each x in X. Thus the joint probability of
stimulus and response is:

P, ) = / P, y,0)d0 = / po(0)p(2)p(y]6, z)db.

The “design” of an experiment is given by the choice of input probability p(z). We want
to design our experiment — choose p(x) — optimally in some sense. One natural idea
would be to choose p(x) in such a way that we learn as much as possible about the under-
lying model, on average. Information theory thus suggests we choose p(z) to optimize the

“A longer version of this paper, including proofs, has been submitted and is available at
http://www.cns.nyu.edu/~liam.



following objective function:

p(z,y,0)

ko) = [ plog0)los B0 )
XxY O p(z,y)p(0)

where I(.;.) denotes mutual information. In other words, we want to maximize the infor-

mation provided about 6 by the pair {x,y}, given our current knowledge of the model as

summarized in the posterior distribution given N samples of data:

pn(0) = (@i, yi}1<i<n)-

Similar ideas have seen application in a wide and somewhat scattered literature; for a partial
bibliography, see the longer draft of this paper at http://www.cns.nyu.edu/~liam. Some-
what surprisingly, we have not seen any applications of the information-theoretic objective
function (1) to the design of neurophysiological experiments (although see the abstract by
[7], who seem to have independently implemented the same idea in a simulation study).

The primary goal of this paper is to elucidate the asymptotic behavior of the a posteriori
density px(6) when we choose x according to the recipe outlined above; in particular,
we want to compare the adaptive strategy to the more usual case, in which the stimuli are
drawn i.i.d. (non-adaptively) from some fixed distribution p(x). Our main result (section
2) states that, under acceptably weak conditions on the models p(y|¢, ), the information-
maximization strategy leads to consistent and efficient estimates of the true underlying
model, in a natural sense. We also give a few simple examples to illustrate the applicability
of our results (section 3).

2 Main Result

First, we note that the problem as posed in the introduction turns out to be slightly easier
than one might have expected, because I({x,y};#) is linear in p(z). This, in turn, implies
that p(x) must be degenerate, concentrated on the points = where I is maximal. Thus,
instead of finding optimal distributions p(x), we need only find optimal inputs z, in the
sense of maximizing the conditional information between 6 and y, given a single input z:

I(y;9|x)E/Y/GPN(Q)P(yeax)Ing pp((y;)?(z) )
e N %

Our main result is a “Bernstein-von Mises” - type theorem [12]. The classical form of
this kind of result says, basically, that if the posterior distributions are consistent (in the
sense that pn (U) — 1 for any neighborhood U of the true parameter 6,) and the relevant
likelihood ratios are sufficiently smooth on average, then the posterior distributions p (6)
are asymptotically normal, with easily calculable asymptotic mean and variance. We adapt
this result to the present case, where z is chosen according to the information-maximization
recipe. It turns out that the hard part is proving consistency (c.f. section 4); we give the
basic consistency lemma (interesting in its own right) first, from which the main theorem
follows fairly easily.

Lemma 1 (Consistency). Assume the following conditions:

1. The parameter space © is compact.

2. The loglikelihood log p(y|x, 8) is Lipschitz in 6, uniformly in x, with respect to
some dominating measure on Y.

3. The prior measure po assigns positive measure to any neighborhood of 6.

4. The maximal divergence sup, Dx,(6o; 0|x) is positive for all § # 6.



Then the posteriors are consistent: py(U) — 1 in probability for any neighborhood U of
6.

Theorem 2 (Asymptotic normality). Assume the conditions of Lemma 1, stengthened as
follows:

1. © has a smooth, finite-dimensional manifold structure in a neighborhood of 6.

2. The loglikelihood log p(y|z, #) is uniformly C2 in 6. In particular, the Fisher
information matrices

p(ylz, 9)>t (p(ylx, 9))
Iy(x) = / ( p(yld, ),
"= ), toled)) \ptylany )P
where the differential p is taken with respect to 6, are well-defined and continuous
in 6, uniformly in (z, ) in some neighborhood of 6.

3. The prior measure pq is absolutely continuous in some neighborhood of 6, with
a continuous positive density at 6.

ma‘XCECO(Igo (x)) det(C) > 0,

where co(ly, (z)) denotes the convex closure of the set of Fisher information ma-
trices Iy, (x).

Then

o = N (g, o%)l] = 0
in probability, where ||.|| denotes variation distance, N'(uy, 0%;) denotes the normal den-
sity with mean p and variance 0%, and u is asymptotically normal with mean 6, and
variance o%;. Here

(NO']ZV)71 — argmaXCECO(IGO (z)) det(O),
the maximum in the above expression is well-defined and unique.

Thus, under these conditions, the information maximization strategy works, and works
better than the i.i.d. = strategy (where the asymptotic variance o2 is inversely related to an
average, not a maximum, over x, and is therefore generically larger).

A few words about the assumptions are in order. Most should be fairly self-explanatory: the
conditions on the priors, as usual, are there to ensure that the prior becomes irrelevant in the
face of sufficient posterior evidence; the smoothness assumptions on the likelihood permit
the local expansion which is the source of asymptotic normality; and the condition on the
maximal divergence function sup, Dxr.(fo; 0]z) ensures that distinct models 6, and 6 are
identifiable. Finally, some form of monotonicity or compactness on © is necessary, mostly
to bound the maximal divergence function sup, D (6o; 8]2) and its inverse away from
zero (the lower bound, again, is to ensure identifiability; the necessity of the upper bound,
on the other hand, will become clear in section 4); also, compactness is useful (though not
necessary) for adapting certain Glivenko-Cantelli bounds [12] for the consistency proof.

It should also be clear that we have not stated the results as generally as possible; we have
chosen instead to use assumptions that are simple to understand and verify, and to leave the
technical generalizations to the interested reader. Our assumptions should be weak enough
for most neurophysiological and psychophysical situations, for example, by assuming that
parameters take values in bounded (though possibly large) sets and that tuning curves are
not infinitely steep. The proofs of these three results are basically elaborations on Wald’s
consistency method and Le Cam’s approach to the Bernstein-von Mises theorem [12].



3 Applications

3.1 Psychometric model

As noted in the introduction, psychophysicists have employed versions of the information-
maximization procedure for some years [14, 9, 13, 6]. References in [13], for example, go
back four decades, and while these earlier investigators usually couched their discussion
in terms of variance instead of entropy, the basic idea is the same (note, for example,
that minimizing entropy is asymptotically equivalent to minimizing variance, by our main
theorem). Our results above allow us to precisely quantify the effectiveness of this stategy.

The standard psychometric model is as follows. The response space Y is binary, corre-
sponding to subjective “yes” or “no” detection responses. Let f be “sigmoidal”: a uni-
formly smooth, monotonically increasing function on the line, such that f(0) = 1/2,
lim;, o f(t) = 0 and lim;_. f(t) = 1 (this function represents the detection proba-
bility when the subject is presented with a stimulus of strength ¢). Let f, 0 = f((t —6)/a);
0 here serves as a location (“threshold™) parameter, while a sets the scale (we assume a is
known, for now, although of course this can be relaxed [6]). Finally, let p(x) and po(6) be
some fixed sampling and prior distributions, respectively, both with smooth densities with
respect to Lebesgue measure on some interval ©.

Now, for any fixed scale a, we want to compare the performance of the information-
maximization strategy to that of the i.i.d. p(z) procedure. We have by theorem 2 that
the most efficient estimator of 6 is asymptotically unbiased with asymptotic variance

0%, 0 ~ (N sup Iy, ()",

info

while the usual calculations show that the asymptotic variance of any efficient estimator
based on i.i.d. samples from p(z) is given by

oha (N [ dp(a)lay(a)) s
X
the key point, again, is that ;7 is an average, while o;,%  is a maximum, and hence
Tiid 2 Tinfo, With equality only in the exceptional case that the Fisher information Iy, (x)
is constant almost surely in p(x).

The Fisher information here is easily calculated here to be

_ (fa,9)2
lo = = Fou).

We can immediately derive two easy but important conclusions. First, there is just one func-
tion f* for which the i.i.d. sampling strategy is as asymptotically efficient as information-
maximization strategy; for all other f, information maximization is strictly more efficient.
The extremal function f* is obtained by setting o;;q = 0inso, iMmplying that Iy, (z) is
constant a.e. [p(z)], and so f* is the unique solution of the differential equation

, 1/2
o =c(roa-rw) .

where the auxiliary constant ¢ = /I, uniquely fixes the scale a. After some calculus, we
obtain (ct) + 1

sin(ct) +

I =5

on the interval [—7/2¢, w/2¢] (and defined uniquely, by monotonicity, as 0 or 1 outside this
interval). Since the support of the derivative of this function is compact, this result is quite



dependent of the sampling density p(x); if p(x) places any of its mass outside of the interval
[—7/2¢,m/2¢], then o7, is always strictly greater than o7, ,,. This recapitulates a basic
theme from the psychophysical literature comparing adaptive and nonadaptive techniques:
when the scale of the nonlinearity f is either unknown or smaller than the scale of the

i.i.d. sampling density p(x), adaptive techniques are greatly preferable.

Second, a crude analysis shows that, as the scale a of the nonlinearity shrinks, the ratio
o2,/02 o grows approximately as 1 /a; this gives quantitative support to the intuition that
the sharper the nonlinearity with respect to the scale of the sampling distribution p(x), the
more we can expect the information-maximization strategy to help.

3.2 Linear-nonlinear cascade model

We now consider a model that has received increasing attention from the neurophysiology
community (see, e.g., [8] for some analysis and relevant references). The model is of
cascade form, with a linear stage followed by a nonlinear stage: the input space X is
a compact subset of d-dimensional Euclidean space (take X to be the unit sphere, for
concreteness), and the firing rate of the model cell, given input # € X, is given by the
simple form

E(y|z,0) = f(< 0,7 >).

Here the linear filter 6 is some unit vector in X’, the dual space of X (thus, the model
space © is isomorphic to X)), while the nonlinearity f is some nonconstant, nonnegative
function on [—1,1]. We assume that f is uniformly smooth, to satisfy the conditions of
theorem 2; we also assume f is known, although, again, this can be relaxed. The response
space Y — the space of possible spike counts, given the stimulus ¥ — can be taken to
be the nonnegative integers. For simplicity, let the conditional probabilities p(y|Z, 6) be
parametrized uniquely by the mean firing rate f(< g, >); the most convenient model, as

usual, is to assume that p(y|Z, ) is Poisson with mean f(< @,Z >). Finally, we assume
that the sampling density p(x) is uniform on the unit sphere (this choice is natural for
several reasons, mainly involving symmetry; see, e.g., [2, 8]), and that the prior po(9) is
positive and continuous (and is therefore bounded away from zero, by the compactness of
0).

The Fisher information for this model is easily calculated as

/ N = 2
Iy(x) = HA<b2>)" eim >)) Pz,
f(<6,Z>)
where f” is the usual derivative of the real function f and Py 4 is the projection operator

corresponding to &, restricted to the (d — 1)-dimensional tangent space to the unit sphere
at 6. Theorem 2 now implies that

P (N -— f’(@?(ﬂ)l’

info tel-11  f(t

ot (¥ /[ 1] dp(t)fl(%iﬁ’“))l,

where g(t) = 1 — t2, p(t) denotes the one-dimensional marginal measure induced on the
interval [—1, 1] by the uniform measure p(z) on the unit sphere, and o2 in each of these
two expressions multiplies the (d — 1)-dimensional identity matrix.

while

Clearly, the arguments of subsection 3.1 apply here as well: the ratio o7,,/07, ;, grows

roughly linearly in the inverse of the scale of the nonlinearity. The more interesting asymp-
totics here, though, are in d. This is because the unit sphere has a measure concentration



property [11]: as d — oo, the measure p(t) becomes exponentially concentrated around
0. In fact, it is easy to show directly that, in this limit, p(¢) converges in distribution to
the normal measure with mean zero and variance d—2. The most surprising implication of
this result is seen for nonlinearities f such that f/(0) = 0, £(0) > 0; we have in mind, for
example, symmetric nonlinearities like those often used to model complex cells in visual
cortex. For these nonlinearities,

Tinfo _ o(a-2) .

Oiid
that is, the information maximization strategy becomes infinitely more efficient than the
usual i.i.d. approach as the dimensionality of the spaces X and © grows.

4 A Negative Example

Our next example is more negative and perhaps more surprising: it shows how the
information-maximation strategy can fail, in a certain sense, if the conditions of the con-
sistency lemma are not met. Let © be multidimensional, with coordinates which are “in-
dependent” in a certain sense, and assume the expected information obtained from one
coordinate of the parameter remains bounded strictly away from the expected information
obtained from one of the other coordinates. For instance, consider the following model:

D —l<x<6_q,
fo1 01 <2 <0,
) 0<x <6y,
f1 0 <z<1

p(lx) =

where 0 < f_q, f1 <1,
|f—1 - 5| > ‘fl - 5|a
are known and —1 < §_; < 0and 0 < ¢, < 1 are the parameters we want to learn.

Let the initial prior be absolutely continuous with respect to Lebesgue measure; this implies
that all posteriors will have the same property. Then, using the inverse cumulative proba-
bility transform and the fact that mutual information is invariant with respect to invertible
mappings, it is easy to show that the maximal information we can obtain by sampling from
the left is strictly greater than the maximal information obtainable from the right, uniformly
in V. Thus the information-maximization strategy will sample from = < 0 forever, leading
to a linear information growth rate (and easily-proven consistency) for the left parameter
and non-convergence on the right. Compare the performance of the usual i.i.d. approach
for choosing x (using any Lebesgue-dominating measure on the parameter space), which
leads to the standard root- NV rate for both parameters (i.e., is strongly consistent in posterior
probability).

Note that this kind of inconsistency problem does not occur in the case of sufficiently
smooth p(y|z,6), by our main theorem. Thus one way of avoiding this problem would
be to fix a finite sampling scale for each coordinate (i.e., discretizing). Below this scale,
no information can be extracted; therefore, when the algorithm hits this “floor” for one
coordinate, it will switch to the other. However, it is possible to find other examples which
show that the lack of consistency is not necessarily tied to the discontinuous nature of the
conditional densities.

5 Directions

In this paper, we have presented a rigorous theoretical framework for adaptively design-
ing experiments using an information-theoretic objective function. Most importantly, we



have offered some asymptotic results which clarify the effectiveness of adaptive experiment
design using the information-theoretic objective function (1); in addition, we expect that
our asymptotic approximations should find applications in approximative computational
schemes for optimizing stimulus choice during this type of online experiment. For exam-
ple, our theorem 2 might suggest the use of a mixture-of-Gaussians representation as an
efficient approximation for the posteriors py (9) [5].

It should be clear that we have left several important questions open. Perhaps the most
obvious such question concerns the use of non-information theoretic objective functions.
It turns out that many of our results apply with only modest changes if the experiment is
instead designed to minimize something like the Bayes mean-square error (perhaps de-
fined only locally if © has a nontrivial manifold structure), for example: in this case,
the results in sections 3.1 and 3.2 remain completely unchanged, while the statement of
our main theorem requires only slight changes in the asymptotic variance formula (see
http://www.cns.nyu.edu/~liam). Thus it seems our results here can add very little to any
discussion of what objective function is “best” in general.

We briefly describe a few more open research directions below.

5.1 “Batch mode” and stimulus dependencies

Perhaps our strongest assumption here is that the experimenter will be able to freely choose
the stimuli on each trial. This might be inaccurate for a number of reasons: for example,
computational demands might require that experiments be run in “batch mode,” with stim-
ulus optimization taking place not after every trial, but perhaps only after each batch of k
stimuli, all chosen according to some fixed distribution p(z). Another common situation
involves stimuli which vary temporally, for which the system is commonly modelled as
responding not just to a given stimulus x(¢), but also to all of its time-translates (¢ — 7).
Finally, if there is some cost C'(z¢, x1) associated with changing the state of the observa-
tional apparatus from the current state x( to z1, the experimenter may wish to optimize an
objective function which incorporates this cost, for example

I(y;9|x1)/C(x0,x1).

Each of these situations is clearly ripe for further study. Here we restrict ourselves to
the first setting, and give a simple conjecture, based on the asymptotic results presented
above and inspired by results like those of [1, 4, 10]. First, we state more precisely the
optimization problem inherent in designing a “batch” experiment: we wish to choose some
sequence, {z; }1<i<x, to maximize

I({zi,yi}1<i<n; 0);

the main difference here is that {x;}1<;<, must be chosen nonadaptively, i.e., without se-
quential knowledge of the responses {y;}. Clearly, the order of any sequence of optimal
{z:}1<i<k IS irrelevant to the above objective function; in addition, it should be apparent
that if no given piece of data (z,y) is too strong (for example, under Lipschitz conditions
like those in lemma 1) that any given elements of such an optimal sequence {z;}1<;<k
should be asymptotically independent. (Without such a smoothness condition — for exam-
ple, if some input z could definitively decide between some given 6 and #; — then no such
asymptotic independence statement can hold, since no more than one sample from such an
2 would be necessary.) Thus, we can hope that we should be able to asymptotically ap-
proximate this optimal experiment by sampling in an i.i.d. manner from some well-chosen
p(x). Moreover, we can make a guess as to the identity of this putative p(x):

Conjecture (“Batch” mode). Under suitable conditions, the empirical distribution corre-



sponding to any optimal sequence {z; }1<i<k.
1 k
() = 20
converges weakly as k — oo to .S, the convex set of maximizers in p(x) of
Eylog(det(E,Iy(x))). ()

Expression (2) above is an average over p(6) of terms proportional to the negative entropy
of the asymptotic Gaussian posterior distribution corresponding to each 6, and thus should
be maximized by any optimal approximant distribution p(x). (Note also that expression
(2) is concave in p(x), ensuring the tractability of the above maximization.) In fact, it is
not difficult, using the results of Clarke and Barron [3] to prove the above conjecture under
the conditions like those of Theorem 2, assuming that X is finite (in which case weak
convergence is equivalent to pointwise convergence); we leave generalizations for future
work.
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