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Abstract

We develop a framework based on Bayesian model averaging to explain
how animals cope with uncertainty about contingencies in classical con-
ditioning experiments. Traditional accounts of conditioning fit parame-
ters within a fixed generative model of reinforcer delivery; uncertainty
over the model structure is not considered. We apply the theory to ex-
plain the puzzling relationship between second-order conditioning and
conditioned inhibition, two similar conditioning regimes that nonethe-
less result in strongly divergent behavioral outcomes. According to the
theory, second-order conditioning results when limited experience leads
animals to prefer a simpler world model that produces spurious corre-
lations; conditioned inhibition results when a more complex model is
justified by additional experience.

1 Introduction

Most theories of classical conditioning, exemplified by the classic model of Rescorla and
Wagner [7], are wholly concerned with parameter learning. They assume a fixed (often
implicit) generative model m of reinforcer delivery and treat conditioning as a process
of estimating values for the parameters wm of that model. Typically, these parameters
represent the rates of reinforcers delivered in the presence of various stimuli. Using the
model and the parameters, the probability of reinforcer delivery can be estimated; such
estimates are assumed to give rise to conditioned responses in behavioral experiments.
More overtly statistical theories have treated uncertainty in the parameter estimates, which
can influence predictions and learning [4].

In realistic situations, the underlying contingencies of the environment are complex and
unobservable, and it can thus make sense to view the modelm as itself uncertain and subject
to learning, though (to our knowledge) no explicitly statistical theories of conditioning
have yet done so. Under the standard Bayesian approach, such uncertainty can be treated
analogously to parameter uncertainty, by representing knowledge about m as a distribution
over a set of possible models, conditioned on evidence. Here we advance this idea as a high-
level computational framework for the role of model learning in classical conditioning. We
do not concentrate on how the brain might implement these processes, but rather explore
the behavior that a system approximating Bayesian reasoning should exhibit. This work



establishes a relationship between theories of animal learning and a recent line of theory
by Tenenbaum and collaborators, which uses similar ideas about Bayesian model learning
to explain human causal reasoning [9].

We have applied our theory to a variety of standard results in animal conditioning, in-
cluding acquisition, negative and positive patterning, and forward and backward blocking.
Here we present one of the most interesting and novel applications, an explanation of a
rather mysterious classical conditioning phenomenon in which opposite predictions about
the likelihood of reinforcement can arise from different amounts of otherwise identical
experience [11]. The opposing effects, both well known, are called second-order condi-
tioning and conditioned inhibition. The theory explains the phenomenon as resulting from
a tradeoff between evidence and model complexity.

2 A Model of Classical Conditioning

In a conditioning trial, a set of conditioned stimuli CS ≡ {A,B, . . . } is presented, poten-
tially accompanied by an unconditioned stimulus or reinforcement signal, US . We repre-
sent the jth stimulus with a binary random variable yj such that yj = 1 when the stimulus
is present. Here the index j, 1 ≤ j ≤ s, ranges over both the (s − 1) conditioned stimuli
and the unconditioned stimulus. The collection of trials within an experimental protocol
constitutes a training data set, D = {yjt}, indexed by stimulus j and trial t, 1 ≤ t ≤ T .

We take the perspective that animals are attempting to recover the generative process under-
lying the observed stimuli. We claim they assert the existence of latent causes, represented
by the binary variables xi ∈ {0, 1}, responsible for evoking the observed stimuli. The re-
lationship between the latent causes and observed stimuli is encoded with a sigmoid belief
network. This particular class of models is not essential to our conclusions; many model
classes should result in similar behavior.

Sigmoid Belief Networks In sigmoid belief networks, local conditional probabilities are
defined as functions of weighted sums of parent nodes. Using our notation,

P (yj = 1 | x1, . . . , xc,wm,m) = (1 + exp(−
∑

i

wijxi − wyj ))−1, (1)

and P (yj = 0 | x1, . . . , xc,wm,m) = 1 − P (yj = 1 | x1, . . . , xc,wm,m). The weight,
wij , represents the influence of the parent node xi on the child node yj . The bias term wyj
encodes the probability of yj in the absence of all parent nodes. The parameter vector wm

contains all model parameters for model structure m.

The form of the sigmoid belief networks we consider is represented as a directed graphical
model in Figure 1a, with the latent causes as parents of the observed stimuli. The latent
causes encode the intratrial correlations between stimuli — we do not model the temporal
structure of events within a trial. Conditioned on the latent causes, the stimuli are mutually
independent. We can express the conditional joint probability of the observed stimuli as∏s
j=1 P (yj | x1, . . . , xc,wm,m).

Similarly, we assume that trials are drawn from a stationary process. We do not consider
trial order effects, and we assume all trials are mutually independent. (Because of these
simplifying assumptions, the present model cannot address a number of phenomena such
as the difference between latent inhibition, partial reinforcement, and extinction.) The
resulting likelihood function of the training data, with latent causes marginalized, is:

P (D | wm,m) =

T∏

t=1

∑

x

s∏

j=1

P (yjt | x,wm,m)P (x | wm,m), (2)
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Figure 1: (a) An example from the proposed set of models. Conditional dependencies
are depicted as links between the latent causes (x1, x2) and the observed stimuli (A, B,
US) during a trial. (b) Marginal likelihood of the data, D, for a simple model and a more
complicated model (after MacKay [5]).

where the sum is over all combinations of values of x = [x1, . . . , xc] and P (x | wm,m) =∏c
i=1(1 + exp(−1xiwxi))

−1.

Sigmoid belief networks have a number of appealing properties for modeling conditioning.
First, the sigmoid belief network is capable of compactly representing correlations between
groups of observable stimuli. Without a latent cause, the number of parameters required to
represent these correlations would scale exponentially with the number of stimuli. Second,
the parent nodes, interacting additively, constitute a factored representation of state. This is
advantageous as it permits generalization to novel combinations of factors. Such additivity
has frequently been observed in conditioning experiments [7].

2.1 Prediction under Parameter Uncertainty

Consider a particular network structure, m, with parameters wm. Given m and a set of
trials, D, the uncertainty associated with the choice of parameters is represented in a pos-
terior distribution over wm. This posterior is given by Bayes’ rule, p(wm | D,m) ∝
P (D | wm,m)p(wm | m), where P (D | m) is from Equation 2 and p(wm | m) is the
prior distribution over the parameters of m. We assume the model parameters are a pri-
ori independent. p(wm | m) =

∏
ij p(wij)

∏
i p(wxi)

∏
j p(wyj ), with Gaussian priors

for weights p(wij) = N (0, 3), latent cause biases p(wxi) = N (0, 3), and stimulus biases
p(wyj ) = N (−15, 1), the latter reflecting an assumption that stimuli are rare in the absence
of causes.

In conditioning, the test trial measures the conditioned response (CR). This is taken to
be a measure of the animal’s estimate of the probability of reinforcement conditioned on
the present conditioned stimuli CS . This probability is also conditioned on the absence
of the remaining stimuli; however, in the interest of clarity, our notation suppresses these
absent stimuli. In the Bayesian framework, given m, this probability, P (US | CS ,m,D)
is determined by integrating over all values of the parameters weighted by their posterior
probability density,

P (US | CS ,m,D) =

∫
P (US | CS ,wm,m,D)p(wm | m,D) dwm (3)



2.2 Prediction under Model Uncertainty

In the face of uncertainty about which is the correct model of contingencies in the world —
for instance, whether a reinforcer is independent of a tone stimulus — a standard Bayesian
approach is to marginalize out the influence of the model choice,

P (US | CS ,D) =
∑

m

P (US | CS ,m,D)P (m | D) (4)

=
∑

m

∫
P (US | CS ,wm,m,D)p(wm | m,D)P (m | D) dwm

The posterior over models, p(m | D), is given by:

P (m | D) =
P (D | m)P (m)∑
m′ P (D | m′)P (m′)

, P (D | m) =

∫
P (D | wm,m)p(wm | m) dwm

The marginal likelihood P (D | m) is the probability of the data under model m, marginal-
izing out the model parameters. The marginal likelihood famously confers an automatic
Occam’s razor effect on the average of Equation 4. Under complex models, parameters
can be found to boost the probability of particular data sets that would be unlikely under
simpler models, but any particular parameter choice is also less likely in more complex
models. Thus there is a tradeoff between model fidelity and complexity (Figure 1b).

We also encode a further preference for simpler models through the prior over model struc-
ture, which we factor as P (m) = P (c)

∏c
i=1 P (li), where c is the number of latent causes

and li is the number of directed links emanating from xi. The priors over c and li are in
turn given by,

P (c) =

{
10−3c

∑5
c′=0

10−3c′ if 0 ≤ c ≤ 5

0 otherwise
and P (li) =

{
10−3li

∑s
l′
i
=0

10−3l′
i

if 0 ≤ li ≤ 4

0 otherwise

In the Bayesian model average, we consider the set of sigmoid belief networks with a
maximum of 4 stimuli and 5 latent causes.

This strong prior over model structures is required in addition to the automatic Occam’s
razor effect in order to explain the animal behaviors we consider. This probably is due to
the extreme abstraction of our setting. With generative models that included, e.g., temporal
ordering effects and multiple perceptual dimensions, model shifts equivalent to the addition
of a single latent variable in our setting would introduce a great deal of additional model
complexity and require proportionally more evidential justification.

2.3 Monte Carlo Integration

In order to determine the predictive probability of reinforcement, Bayesian model aver-
aging requires that we evaluate Equation 4. Unfortunately, the integral is not amenable
to analytic solution. Hence we approximate the integral with a sum over samples from
the posterior p(wm,m | D). Acquiring samples is complicated by the need to sample
over parameter spaces of different dimensions. In the simulations reported here, we solved
this problem and obtained samples using a reversible jump Markov chain Monte Carlo
(MCMC) method [2]. A new sample in the chain is obtained by proposing perturbations
to the current sample’s model structure or parameters.1 Jumps include the addition or re-
moval of links or latent causes, or updates to the stimulus biases or weights. To improve
mixing over the different modes of the target distribution, we used exchange MCMC, which
enables fast mixing between modes through the coupling of parallel Markov chains [3].

1The proposal acceptance probability satisfies detailed balance for each type of jump.



Group A-US A-X B-US Test ;Result Test ;Result
No-X 96 0 8 X ;− XB ;CR
Few-X 96 4 8 X ;CR XB ;CR
Many-X 96 48 8 X ;− XB ;−

Table 1: A summary of some of the experiments of Yin et al. [11]. The US was a footshock;
A = white noise or buzzer sound; X = tone; B = click train.

3 Second-Order Conditioning and Conditioned Inhibition

We use the model to shed light on the relationship between two classical conditioning
phenomena, second-order conditioning and conditioned inhibition. The procedures for es-
tablishing a second-order excitor and a conditioned inhibitor are similar, yet the results are
drastically different. Both procedures involve two kinds of trials: a conditioned stimulus A
is presented with the US (A-US ); and A is also presented with a target conditioned stimu-
lusX in unreinforced trials (A-X). In second order conditioning,X becomes an excitor —
it is associated with increased probability of reinforcement, demonstrated by conditioned
responding. But in conditioned inhibition, X becomes an inhibitor, i.e. associated with
decreased probability of reinforcement. Inhibition is probed with two tests: a transfer test,
in which the inhibitor is paired with a second excitor B and shown to reduce conditioned
responding, and a retardation test, in which the time course of response development under
subsequent excitatory X-US training is retarded relative to naive animals.

Yin et al. [11] explored the dimensions of these two procedures in an effort to distill the
essential requirements for each. Under previous theories [8], it might have seemed that the
crucial distinction between second order conditioning and conditioned inhibition had to do
with either blocked versus interspersed trials, or with sequential versus simultaneous pre-
sentation of the CSes. However, they found that using only interspersed trials and simul-
taneous presentation of the conditioned stimuli, they were able to shift from second-order
conditioning to conditioned inhibition simply by increasing the number of A-X pairings.2

Table 1 summarizes the relevant details of the experiment.

From a theoretical perspective, these results present a challenge for models of conditioning.
Why do animals so drastically change their behavior regarding X given only more of the
same kind of A-X experience? Bayesian model averaging offers some insight.

We simulated the experiments of Yin et al., matching their numbers for each type of trial,
as shown in Table 1. Results of the MCMC approximation of the Bayesian model average
integration are shown in Figure 2. All MCMC runs were at least 5 × 106 iterations long
excluding a burn-in of 1× 106 iterations. The sequences were subsampled to 2.5× 104.

In Figure 2a, we see that P (US | X,D) reveals significant second order conditioning
with few A-X trials. With more trials the predicted probability of reinforcement quickly
decreases. These results are consistent with the findings of Yin et al., as shown in Ta-
ble 1. With few A-X trials there are insufficient data to justify a complicated model that
accurately fits the data. Due to the automatic Occam’s razor and the prior preference for
simple models, high posterior density is inferred for the simple model of Figure 3a. This
model combines the stimuli from all trial types and attributes them to a single latent cause.
When X is tested alone, its connection to the US through the latent cause results in a large
P (US | X,D).

With more training trials, the preference for simpler models is more successfully offset and
more complicated models — capable of describing the data more accurately — are given

2In other conditions, trial ordering was shown to have an additional effect; this is outside the scope
of the present theory due to our stationarity assumptions.
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Figure 2: A summary of the simulation results. Error bars indicate the 3σ margin in the
standard error of the estimate (we omit very small error bars). (a) P (US | X,D) and
P (US | A,D) as a function of A-X trials. For few trials (2 to 8), P (US | X,D) is high,
indicative of second-order conditioning. (b) P (US | X,B,D) and P (US | B,D) as a
function of number of A-X trials. After 10 trials, X is able to significantly reduce the
predicted probability of reinforcement generated by the presentation of B. (c) Results of
a retardation test. With many A-X trials, acquisition of an excitatory association to X is
retarded.

greater posterior density (Figure 3c). An example of such a model is shown in Figure 3b.
In the model, X is made a conditioned inhibitor by a negative valued weight between x2

and X . In testing X with a transfer excitor B, as shown in Figure 2, this weight acts to
cancel a positive correlation between B and the US . Note that the shift from excitation
to inhibition is due to inclusion of uncertainty over models; inferring the parameters with
the more complex model fixed would result in immediate inhibition. In their experiment,
Yin et al. also conducted a retardation test of conditioned inhibition for X . We follow
their procedure and include in D 3 X-US trials. Our retardation test results are shown in
Figure 2 and are in agreement with the findings of Yin et al.

A further mystery about conditioned inhibitors, from the perspective of the benchmark
theory of Rescorla and Wagner [7], is the nonextinction effect: repeated presentations of a
conditioned inhibitor X alone and unreinforced do not extinguish its inhibitory properties.
An experiment by Williams and Overmier [10] demonstrated that unpaired presentations of
a conditioned inhibitor can actually enhance its ability to suppress responding in a transfer
test. Our model shows the same effect, as illustrated with a dramatic test in Figure 4. Here
we used the previous dataset with only 8 A-X pairings and added a number of unpaired
presentations of X . The additional unpaired presentations shift the model from a second-
order conditioning regime to a conditioned inhibition regime. The extinction trials suppress
posterior density over simple models that exhibit a positive correlation betweenX and US ,
shifting density to more complex models and unmasking the inhibitor.

4 Discussion

We have demonstrated our ideas in the context of a very abstract set of candidate models,
ignoring the temporal arrangement of trials and of the events within them. Obviously, both
of these issues have important effects, and the present framework can be straightforwardly
generalized to account for them, with the addition of temporal dependencies to the latent
variables [1] and the removal of the stationarity assumption [4].

An odd but key concept in early models of classical conditioning is the “configural unit,”
a detector for a conjunction of co-active stimuli. “Configural learning” theories (e.g. [6])
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Figure 3: Sigmoid belief networks with high probability density under the posterior. (a)
After a few A-X pairings: this model exhibits second-order conditioning. (b) After many
A-X pairings: this model exhibits conditioned inhibition. (c) The average number of latent
causes as a function of A-X pairings.

rely on heuristics for creating such units in response to observations, a rough-and-ready
sort of model structure learning. With a stimulus configuration represented through a latent
cause, our theory provides a clearer prescription for how to reason about model structure.
Our framework can be applied to a reservoir of configural learning experiments, including
negative and positive patterning and a host of others. Another body of data on which our
work may shed light is acquisition of a conditioned response. Recent theories of acquisition
(e.g. [4]) propose that animals respond to a conditioned stimulus (CS ) when the difference
in the reinforcement rate between the presence and absence of the CS satisfies some test of
significance. From the perspective of our model, this test looks like a heuristic for choosing
between generative models of stimulus delivery that differ as to whether the CS and US
are correlated through a shared hidden cause.

To our knowledge, the relationship between second-order conditioning and conditioned in-
hibition has never been explicitly studied using previous theories. This is in part because the
majority of classical conditioning theories do not account for second-order conditioning at
all, since they typically consider learning only about CS -US but not CS -CS correlations.
Models based on temporal difference learning [8] predict second-order conditioning, but
only if the two CSes are presented sequentially (not true of the experiment considered
here). Second-order conditioning can also be predicted if the A-X pairings cause some
sort of representational change so that A’s excitatory associations generalize to X . Yin et
al. [11] suggest that if this representational learning is fast (as in [6], though that theory
would need to be modified to include any second-order effects) and if conditioned inhi-
bition accrues only gradually by error-driven learning [7], then second-order conditioning
will dominate initially. The details of such an account seem never to have been worked out,
and even if they were, such a mechanistic theory would be considerably less illuminating
than our theory as to the normative reasons why the animals should predict as they do.
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Figure 4: Effect of adding unpaired presentations ofX on the strength ofX as an inhibitor.
(a) Posterior probability of models which predict different values of P (US | X,B). With
only 1 unpaired presentation of X , most models predict a high probability of US (second-
order conditioning). With 2 or 3 unpaired presentations of X , models which predict a low
P (US | X,B) get more posterior weight (conditioned inhibition). (b) A plot contrasting
P (US | B,D) and P (US | X,B,D) as a function of unpaired X trials. The reduction in
the probability of reinforcement indicates an enhancement of the inhibitory strength of X .
Error bars indicate the 3σ margin in the standard error in the estimate (omitting small error
bars).
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