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Abstract

We present the software architecture of a robotic system for mapping
abandoned mines. The software is capable of acquiring consistent 2D
maps of large mines with many cycles, represented as Markov random
£elds. 3D C-space maps are acquired from local 3D range scans, which
are used to identify navigable paths using A* search. Our system has
been deployed in three abandoned mines, two of which inaccessible to
people, where it has acquired maps of unprecedented detail and accuracy.

1 Introduction
This paper describes the navigation software of a deployed robotic system for mapping
subterranean spaces such as abandoned mines. Subsidence of abandoned mines poses a
major problem for society, as do ground water contaminations, mine £res, and so on. Most
abandoned mines are inaccessible to people, but some are accessible to robots. Autonomy
is a key requirement for robots operating in such environments, due to a lack of wireless
communication technology for subterranean spaces.

Our vehicle, shown in Figure 1 (see [1] for a detailed hardware description) is equipped
with two actuated laser range £nders. When exploring and mapping unknown mines, it
alternates short phases of motion guided by 2D range scans, with phases in which the
vehicle rests to acquire 3D range scans. An analysis of the 3D scans leads to a path that
is then executed, using rapidly acquired 2D scans to determine the robot’s motion relative
to the 3D map. If no such path is found a high-level control module adjusts the motion
direction accordingly.

Acquiring consistent large-scale maps without external geo-referencing through GPS is
largely considered an open research issue. Our approach relies on ef£cient statistical tech-
niques for generating such maps in real-time. At the lowest level, we employ a fast scan
matching algorithm for registering successive scans, thereby recovering robot odometry.
Groups of scans are then converted into local maps, using Markov random £eld repre-
sentations (MRFs) to characterize the residual path uncertainty. Loop closure is attained
by adding constraints into those MRFs, based on a maximum likelihood (ML) estimator.
However, the brittleness of the ML approach is overcome by a “lazy” data association
mechanism that can undo and redo past associations so as to maximize the overall map
consistency.

To navigate, local 3D scans are mapped into 2 1
2

D terrain maps, by analyzing surface gradi-
ents and vertical clearance in the 3D scans. The result is subsequently transformed into cost



Figure 1: The Groundhog robot is
a 1,500 pound custom-built vehicle
equipped with onboard computing, laser
range sensing, gas and sinkage sensors,
and video recording equipment. Its pur-
pose is to explore and map abandoned
mines.

functions expressed in the robot’s three-dimensional con£guration space, by convolving
the 2 1

2
D terrain maps with kernels that describe the robot’s footprints in different orienta-

tions. Fast A* planning is then employed in con£guration space to generate paths executed
through PD control.

The system has been tested in a number of mines. Some of the results reported here
were obtained via manual control in mines accessible to people. Others involved fully
autonomous exploration, for which our robot operated fully self-guided for several hours
beyond the reach of radio communication.

2 2D Mapping
2.1 Generating Locally Consistent Maps

As in [6, 9], we apply an incremental scan matching technique for registering scans, ac-
quired using a forward-pointed laser range £nder while the vehicle is in motion. This
algorithm aligns scans by iteratively identifying nearby points in pairs of consecutive range
scans, and then calculating the relative displacement and orientation of these scans by min-
imizing the quadratic distance of these pairs of points [2]. This approach leads to the
recovery of two quantities: locally consistent maps and an estimate of the robot’s motion.
It is well-understood [3, 6], however, that local scan matching is incapable of achieving
globally consistent maps. This is because of the residual error in scan matching, which
accumulates over time. The limitation is apparent in the map shown in Figure 2a, which is
the result of applying local scan matching in a mine that is approximately 250 meters wide.

Our approach addresses this problem by explicitly representing the uncertainty in the map
and the path using a Markov random £eld (MRF) [11]. More speci£cally, the data acquired
through every £ve meters of consecutive robot motion is mapped into a local map [3].
Figure 3a shows such a local map. The absolute location of orientation of the k-th map will
be denoted by ξk = ( xk yk θk )T ; here x and y are the Cartesian coordinates and θ is
the orientation. From the scan matcher, we can retrieve relative displacement information
of the form δk,k−1 = ( ∆xk,k−1 ∆yk,k−1 ∆θk,k−1 )

T which, if scan matching was error-
free, would enable us to recover absolute information via the following recursion (under
the boundary condition ξ0 = (0, 0, 0)T )

ξk = f(ξk−1, δk,k−1) =

(

xk−1 +∆xk,k−1 cos θk,k−1 +∆yk,k−1 sin θk−1

yk−1 −∆xk,k−1 sin θk,k−1 +∆yk,k−1 cos θk−1

θk−1 +∆θk,k−1

)

(1)

However, scan matching is not without errors. To account for those errors, our approach
generalizes this recursion into a Markov random £eld (MRF), in which each variable Ξ =
ξ1, ξ2, . . . is a (three-dimensional) node. This MRF is de£ned through the potentials:

φ(ξk, ξk−1) = exp− 1
2
(ξk − f(ξk−1, δk,k−1))

TRk,k−1(ξk − f(ξk−1, δk,k−1)) (2)

Here Rk,k−1 is the inverse covariance of the uncertainty associated with the transition
δk,k−1. Since the MRF is a linear chain without cycles, the mode of this MRF is the solution
to the recursion de£ned in (1). Figure 3b shows the MRF for the data collected in the
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Figure 2: Mine map with incremental ML scan matching (left) and using our lazy data association
approach (right). The map is approximately 250 meters wide.

Bruceton Research Mine, over a distance of more than a mile. We note this representation
generalizes the one in [11], who represent posteriors by a local bank of Kalman £lters.

2.2 Enforcing Global Consistency

The key advantage of the MRF representation is that it encompasses the residual uncer-
tainty in local scan matching. This enables us to alter the shape of the map in accordance
with global consistency constraints. These constraints are obtained by matching local maps
acquired at different points in time (e.g., when closing a large cycle). In particular, if the
k-th map overlaps with some map j acquired at an earlier point in time, our approach lo-
calizes the robot relative to this map using once again local scan matching. As a result, it
recovers a relative constraint φ(ξk, ξj) between the coordinates of non-adjacent maps ξk
and ξj . This constraint is of the same form as the local constraints in (2), hence is repre-
sented by a potential. For any £xed set of such potentials Φ = {φ(ξk, ξj)}, the resulting
MRF is described through the following negative log-likelihood function

− log p(Ξ) = const.+ 1
2

∑

k,j

(ξk − f(ξj , δk,j))
T Rk,j (ξk − f(ξj , δk,j)) (3)

where Ξ = ξ1, ξ2, . . . is the set of all map poses, and f is de£ned in (1).

Unfortunately, the resulting MRF is not a linear chain any longer. Instead, it contains
cycles. The variables Ξ = ξ1, ξ2, . . . can be recovered using any of the standard inference
algorithms for inference on graphs with cycles, such as the popular loopy belief propagation
algorithm and related techniques [5, 14, 17]. Our approach solves this problem by matrix
inversion. In particular, we linearize the function f using a Taylor expansion:

f(ξj , δk,j) ≈ f(ξ̄j) + Fk,j(ξj − ξ̄j) (4)

where ξ̄j denotes a momentary estimate of the variables ξj (e.g., the solution of the
recursion (1) without the additional data association constraints). The matrix Fk,j =
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Figure 3: (a) Example of a local map.
(b) The Markov random £eld: Each
node is the center of a local map, ac-
quired when traversing the Bruceton Re-
search Mine near Pittsburgh, PA.

∇ξj
f(ξ̄j , δk,j) is the Jacobean of f(ξj , δk,j) at ξ̄j :

Fk,jx =





1 0 −∆xk,j sin θ̄k +∆yk,j cos θ̄k
0 1 −∆xk,j cos θ̄k −∆yk,j sin θ̄k
0 0 1



 (5)

The resulting negative log-likelihood is given by

− log p(Ξ) ≈ const.+ 1
2

∑

k,j

(ξk − f(ξ̄j)− Fk,j(ξj − ξ̄j))
T
σ
−1
k,j (ξk − f(ξ̄j)− Fk,j(ξj − ξ̄j))

is quadratic in the variables Ξ of the form const.+ (AΞ− a)T R (AΞ− a), where A is a
diagonal matrix, a is a vector, and R is a sparse matrix that is non-zero for all elements j, k
in the set of potentials. The minimum of this function is attained at (ATRA)−1ATRa. This
solution requires the inversion of a sparse matrix. Empirically, we £nd that this inversion
can be performed very ef£ciently using an inversion algorithm described in [15]; it only
requires a few seconds for matrices composed of hundreds of local map positions (and it
appears to be numerically more stable than the solution in [11, 6]). Iterative application of
this linearized optimization quickly converges to the mode of the MRF, which is the set of
locations and orientations Ξ. However, we conjecture that recent advances on inference in
loopy graphs can further increase the ef£ciency of our approach.

2.3 Lazy Data Association Search

Unfortunately, the approach described thus far leads only to a consistent map when the
additional constraints φ(ξk, ξj) obtained after loop closure are correct. These constraints
amount to a maximum likelihood solution for the challenging data association problem
that arises when closing a loop. When loops are large, this ML solution might be wrong—a
problem that has been the source of an entire literature on SLAM (simultaneous localization
and mapping) algorithms. Figure 4a depicts such a situation, obtained when operating our
vehicle in a large abandoned mine.

The current best algorithms apply proactive particle £lter (PF) techniques to solve this
problem [4, 8, 12, 13]. PF techniques sample from the path posterior. When closing a loop,
random variations in these samples lead to different loop closures. As long as the correct
such closure is in the set of surviving particle £lters, the correct map can be recovered.
In the context of our present system, this approach suffers from two disadvantages: it is
computationally expensive due to its proactive nature, and it provides no mechanism for
recovery should the correct loop closure not be represented in the particle set.

Our approach overcomes both of these limitations. When closing a loop, it always picks the
most likely data association. However, it also provides a mechanism to undo and redo past
data association decisions. The exact data association algorithm involves a step that moni-
tors the likelihood of the most recent sensor measurement given the map. If this likelihood
falls below a threshold, data association constraints are recursively undone and replaced
by other constraints of decreasing likelihood (including the possibility of not generating a
constraint at all). The search terminates if the likelihood of the most recent measurement
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Figure 4: Example of our lazy data association technique: When closing a large loop, the robot
£rst erroneously assumes the existence of a second, parallel hallway. However, this model leads to
a gross inconsistency as the robot encounters a corridor at a right angle. At this point, our approach
recursively searches for improved data association decisions, arriving at the map shown on the right.

exceeds the threshold [7]. In practice, the threshold test works well, since global inconsis-
tencies tend to induce gross inconsistencies in the robot’s measurements at some point in
time.

The algorithm is illustrated in Figure 4. The left panel shows the ML association after
traversing a large loop inside a mine: At £rst, it appears that the existence of two adjacent
corridors is more likely than a single one, according to the estimated robot motion. How-
ever, as the robot approaches a turn, a noticeable inconsistency is detected. Inconsistencies
are found by monitoring the measurement likelihood, using a threshold for triggering an
exception. As a result, our data association mechanism recursively removes past data asso-
ciation constraints back to the most recent loop closure, and then “tries” the second most
likely hypothesis. The result of this backtracking step is shown in the right panel of Fig-
ure 4. The backtracking requires a fraction of a second, and with high likelihood leads to
a globally consistent map and, as a side-effect, to an improved estimate of the map coordi-
nates Ξ. Figure 2b shows a proto-typical corrected map, which is globally consistent.

3 Autonomous Navigation
2D maps are suf£cient for localizing robots inside mines; however, they are insuf£cient to
navigate a robot due to the rugged nature of abandoned mines. Our approach to navigation
is based on 3D maps, acquired in periodic intervals while the vehicle suspends motion to
scan its environment. A typical 3D scan is shown in Figure 5a; others are shown in Figure 7.

3.1 2 1
2

D Terrain Maps

In a £rst processing step, the robot projects local 3D maps onto 2 1
2

D terrain maps, such as
the one shown in Figure 5b. The gray-level in this map illustrates the degree at which the
map is traversable: the brighter a 2D location, the better suited it is for navigation.

The terrain map is obtained by analyzing all measurements 〈x, y, z〉 in the 3D scan
(where z is the vertical dimension). For each rectangular surface region {xmin;xmax} ×
{ymin; ymax}, it identi£es the minimum z-value, denoted z. It then searches for the largest
z value in this region whose distance to z does not exceed the vehicle height (plus a safety
margin); this value will be called z̄. The difference z̄ − z is the navigational coef£cient:
it loosely corresponds to the ruggedness of the terrain under the height of the robot. If no
measurement is available for the target region {xmin;xmax} × {ymin; ymax}, the region is
marked as unknown. For safety reasons, multiple regions {xmin;xmax} × {ymin; ymax}
overlap when building the terrain map. The terrain map is subsequently convolved with
a narrow radial kernel that serves as a repellent potential £eld, to keep the robot clear of
obstacles.

3.2 Con£guration Space Maps

The terrain map is used to construct a collection of maps that describe the robot’s con£g-
uration space, or C-space [10]. The C-space is the three-dimensional space of poses that
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Figure 5: (a) A local 3D model of the mine corridor, obtained by a scanning laser range £nder. (b)
The corresponding 2 1

2
D terrain map extracted from this 3D snapshot: the brighter a location, the

easier it is to navigate. (c) Kernels for generating directional C-space maps from the 2 1
2

D terrain
map. The two black bars in each kernel correspond to the vehicle’s tires. Planning in these C-space
maps ensures that the terrain under the tires is maximally navigable.

the vehicle can assume; it comprises the x-y location along with the vehicle’s orientation
θ. The C-space maps are obtained by convolving the terrain map with oriented kernels that
describe the robot’s footprint. Figure 5c shows some of these kernels: Most value is placed
in the wheel area of the vehicle, with only a small portion assigned to the area in between,
where the vehicle’s clearance is approximately 30 centimeters. The intuition of using such
a kernel is as follows: Abandoned mines often possess railroad tracks, and while it is per-
fectly acceptable to navigate with a track between the wheels, traversing or riding these
tracks causes unnecessary damage to the tires and will increase the energy consumption.
The result of this transformation is a collection of C-space maps, each of which applies to
a different vehicle orientation.

3.3 Corridor Following

Finally, A* search is employed in C-space to determine a path to an unexplored area. The
A* search is initiated with an array of goal points, which places the highest value at loca-
tions at maximum distance straight down a mine corridor. This approach £nds the best path
to traverse, and then executes it using a PD controller.

If no such path can be found even within a short range (2.5 meters), the robot decides
that the hallway is not navigable and initiates a high-level decision to turn around. This
technique has been suf£cient for our autonomous exploration runs thus far (which involved
straight hallway exploration), but it does not yet provide a viable solution for exploring
multiple hallways connected by intersections (see [16] for recent work on this topic).

4 Results
The approach was tested in multiple experiments, some of which were remotely operated
while in others the robot operated autonomously, outside the reach of radio communication.
On October 27, 2002, Groundhog was driven under manual control into the Florence Mine
near Burgettstown, PA. Figure 6b shows a picture of the tethered and remotely controlled
vehicle inside this mine, which has not been entered by people for many decades. Its
partially ¤ooded nature prevented an entry into the mine for more than approximately 40
meters. Maps acquired in this mine are shown in Figure 9.

On May 30, 2003, Groundhog successfully explored an abandoned mine using the fully
autonomous mode. The mine, known as the Mathies Mine near Pittsburgh, is part of a
large mine system near Courtney, PA. Existing maps for this mine are highly inaccurate,
and the conditions inside the mine were unknown to us. Figure 6a shows the robot as it
enters the mine, and Figure 7a depicts a typical 3D scan acquired in the entrance area.
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Figure 6: (a) The vehicle as it enters the Mathies Mine on May 30, 2003. It autonomously descended
308 meters into the mine before making the correct decision to turn around due to a blockage inside
the mine. (b) The vehicle, as it negotiates acidic mud under manual remote control approximately 30
meters into the Florence Mine near Burgettstown, PA.

(a) (b)

Figure 7: 3D local maps: (a) a typical corridor map that is highly navigable. (b) a map of a broken
ceiling bar that renders the corridor segment unnavigable. This obstacle was encountered 308 meters
into the abandoned Mathies Mine.

Figure 8: Fraction of the 2D mine map of the Mathies Mine, autonomously explored by the Ground-
hog vehicle. Also shown is the path of the robot and the locations at which it chose to take 3D scans.
The protruding obstacle shows up as a small dot-like obstacle in the 2D map.

(a) (b) (c)

Figure 9: (a) A small 2D map acquired by Groundhog in the Florence Mine near Burgettstown, PA.
This remotely-controlled mission was aborted when the robot’s computer was ¤ooded by water and
mud in the mine. (b) View of a local 3D map of the ceiling. (c) Image acquired by Groundhog inside
the Mathies Mine (a dry mine).



After successfully descending 308 meters into the Mathies Mine, negotiating some rough
terrain along the way, the robot encountered a broken ceiling beam that draped diagonally
across the robot’s path. The corresponding 3D scan is shown in Figure 7b: it shows rubble
on the ground, along with the ceiling bar and two ceiling cables dragged down by the bar.
The robot’s A* motion planner failed to identify a navigable path, and the robot made the
appropriate decision to retreat. Figure 8 shows the corresponding 2D map; the entire map
is 308 meters long, but here we only show the £nal section, along with the path and the
location at which the robot stop to take a 3D scan. An image acquired in this mine is
depicted in Figure 9c.

5 Conclusion
We have described the software architecture of a deployed system for robotic mine map-
ping. The most important algorithmic innovations of our approach are new, lazy techniques
for data association, and a fast technique for navigating rugged terrain. The system has
been tested under extreme conditions, and generated accurate maps of abandoned mines
inaccessible to people.
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