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Abstract

The decision functions constructed by support vector machines (SVM’s)
usually depend only on a subset of the training set—the so-called support
vectors. We derive asymptotically sharp lower and upper bounds on the
number of support vectors for several standard types of SVM’s. In par-
ticular, we show for the Gaussian RBF kernel that the fraction of support
vectors tends to twice the Bayes risk for the L1-SVM, to the probability
of noise for the L2-SVM, and to 1 for the LS-SVM.

1 Introduction

Given a training set T = ((x1, y1), . . . , (xn, yn)) with xi ∈ X , yi ∈ Y := {−1, 1}
standard support vector machines (SVM’s) for classification (cf. [1], [2]) solve

arg min
f∈H
b∈R

λ‖f‖2
H +

1

n

n
∑

i=1

L
(

yi(f(xi) + b)
)

, (1)

where H is a reproducing kernel Hilbert space (RKHS) of a kernel k : X×X → R (cf. [3],
[4]), λ > 0 is a free regularization parameter and L : R → [0,∞) is a convex loss function.

Common choices for L are the hinge loss function L(t) := max{0, 1−t}, the squared hinge
loss function L(t) := (max{0, 1− t})2 and the least square loss function L(t) := (1− t)2.
The corresponding classifiers are called L1-SVM, L2-SVM and LS-SVM, respectively.

Common choices of kernels are the Gaussian RBF k(x, x′) = exp(−σ2‖x − x′‖2
2) for

x, x′ ∈ R
d and fixed σ > 0 and polynomial kernels k(x, x′) = (〈x, x′〉+c)m for x, x′ ∈ R

d

and fixed c ≥ 0, m ∈ N.

If (fT,λ, bT,λ) ∈ H × R denotes a solution of (1) we have

fT,λ =
1

2λ

n
∑

i=1

yiα
∗
i k(xi, .) (2)

for suitable coefficients α∗
1, . . . , α

∗
n ∈ R (cf. [5]). Obviously, only the samples xi with

α∗
i 6= 0 have an impact on fT,λ. These samples are called support vectors. The fewer

support vectors fT,λ has the faster it can be evaluated. Moreover, it is well known that



the number of support vectors #SV (fT,λ) of the representation of fT,λ (cf. Section 3
for a brief discusssion) also has a large impact on the time needed to solve (1) using the
dual problem. Therefore, it is of high interest to know how many support vectors one
can expect for a given classification problem. In this work we address this question by
establishing asymptotically lower and upper bounds on the number of support vectors for
typical situations.

The rest of the paper is organized as follows: in Section 2 we introduce some technical
notions and recall recent results in the direction of the paper. In Section 3 our results are
presented and discussed, and finally, in Section 4 their proofs can be found.

2 Notations and known results

The standard assumption in classification is that the training set T consists of i.i.d. pairs
drawn from an unknown distribution P on X×Y . For technical reason we assume through-
out this paper that X is a compact metric space, e.g. a bounded, closed subset of R

d. A
Bayes decision function (cf. [6]) fP : X → Y is a function that PX -a.s. equals 1 and −1
on C1 := {x ∈ X : P (1|x) > 1/2} and C−1 := {x ∈ X : P (−1|x) > 1/2}, respectively.
The corresponding classification error RP of such a function is called the Bayes risk of P .
Recall, that the Bayes risk is the smallest possible classification error.

A RKHS H is called universal if H is ‖.‖∞-dense in the space of continuous functions
C(X). The best known example of a universal kernel is the Gaussian RBF kernel (cf. [7]).

Let us recall some results of the recent paper [8]. To simplify the statements, let us assume
that P has no discrete components, i.e. PX({x}) = 0 for all x ∈ X . Furthermore, let L be
a continuous convex loss function satisfying some minor regularity conditions. Then it was
shown for universal RKHS’s and stritly positive nullsequences (λn) satisfying a regularity
condition that the following statements hold for all ε > 0 and n → ∞:

Pn
(

T ∈ (X × Y )n : #SV (fT,λn
) ≥ (RP − ε)n

)

→ 1 . (3)

In particular, this result holds for L1-SVM’s. Furthermore, for L being also differentiable
(e.g. L2-SVM’s and LS-SVM’s) it was proved

Pn
(

T ∈ (X × Y )n : #SV (fT,λn
) ≥ (SP − ε)n

)

→ 1 , (4)

where SP := PX({x ∈ X : 0 < P (1|x) < 1}) denotes the probability of the set of points
where noise occurs. Obviously, we always have SP ≥ 2RP and for noisy non-degenerate
P , that is for P with

PX

({

x ∈ X : P (1|x) 6∈ {0, 1/2, 1}
})

> 0

this relation becomes a strict inequality. We shall prove in the next section that (3) can
be significantly improved for the L1-SVM. We shall also show that this new lower bound
is also an upper bound under moderate conditions on P and H . Furthermore, we prove
that (4) is asymptotically optimal for the L2-SVM and show that it can be significantly
improved for the LS-SVM.

3 New bounds

We begin with lower and upper bounds for the L1-SVM. Recall, that the problem (1) for
this classifier can be reformulated as

minimize λ〈f, f〉 + 1
n

n
∑

i=1

ξi for f ∈ H, b ∈ R, ξ ∈ R
n

subject to yi

(

f(xi) + b
)

≥ 1 − ξi, i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n .

(5)



Instead of solving (5) directly, one usually solves the dual optimization problem (cf. [4])

maximize
n
∑

i=1

αi −
1
4λ

n
∑

i,j=1

yiyjαiαjk(xi, xj) for α ∈ R
n

subject to
n
∑

i=1

yiαi = 0,

0 ≤ αi ≤
1
n
, i = 1, . . . , n .

(6)

If (α∗
1, . . . , α

∗
n) ∈ R denotes a solution of (6) then fT,λ can be computed by (2). Note that

the representaion of fT,λ is not unique in general, i.e. using other algorithms for solving (5)
can lead to possibly sparser representations. However, in contrast to the general case the
representation (2) of fT,λ is Pn-almost surely (a.s.) unique if the kernel is universal and
P has no discrete components (cf. [8]). Since our results for the L1-SVM hold for general
kernels we always assume that fT,λ is found by (6). Finally, for a loss function L and a
RKHS H we write

RL,P,H := inf
f∈H
b∈R

RL,P (f + b) ,

where RL,P (f) := E(x,y)∼P L
(

yf(x)
)

. Note, that fT,λn
+bT,λn

cannot achieve an L-risk
better than RL,P,H , if H is the RKHS used in (1). Now, our first result is:

Theorem 3.1 Let k be a continuous kernel on X and P be a probability measure on X×Y
with no discrete components. Then for the L1-SVM using a regularization sequence (λn)
with λn → 0 and nλ2

n/ log n → ∞ and all ε > 0 we have

Pn
(

T ∈ (X × Y )n : #SV (fT,λn
) ≥ (RL,P,H − ε)n

)

→ 1 .

Remark 3.2 If k is a universal kernel we have RL,P,H = 2RP (cf. Ste7) and thus Theorem
3.1 yields the announced improvement of (3). For non-universal kernels we even have
RL,P,H > 2RP in general.

Remark 3.3 For specific kernels the regularity condition nλ2
n/ log n → ∞ can be weak-

ened. Namely, for the Gaussian RBF kernel on X ⊂ R
d it can be substituted by

nλn |log λn|
−d−1 → ∞. Only slightly stronger conditions are sufficient for C∞-kernels.

The interested reader can prove such conditions by establishing (9) using the results of [9].

Remark 3.4 If H is finite dimensional and n > dim H the representation (2) of fT,λn
can

be simplified such that only at most dim H kernel evaluations are neccessary. However,
this simplification has no impact on the time needed for solving (6).

In order to formulate an upper bound on #SV (fT,λn
) recall that a function is called an-

alytic if it can be locally represented by its Taylor series. Let L be a loss function, H
be a RKHS over X and P be a probability measure on X × Y . We call the pair (H,P )
non-trivial (with respect to L) if

RL,P,H < inf
b∈R

RL,P (b) ,

i.e. the incorporation of H has a non-trivial effect on the L-risk of P . If H is universal we
have RL,P,H = inf{RL,P (f) f : X → R} (cf. [9]) and therefore (H,P ) is non-trivial
if P has two non-vanishing classes, i.e. PX(C1) > 0 and PX(C−1) > 0. Furthermore, we
denote the open unit ball of R

d by BRd . Now our upper bound is:

Theorem 3.5 Let H be the RKHS of an analytic kernel on BRd . Furthermore, let X ⊂ BRd

be a closed ball and P be a noisy non-degenerate probability measure on X × Y such that



PX has a density with respect to the Lebesgue measure on X and (H,P ) is non-trivial.
Then for the L1-SVM using a regularization sequence (λn) which tends sufficiently slowly
to 0 we have

#SV (fT,λn
)

n
→ RL,P,H

in probability.

Probably the most restricting condition on P in the above theorem is that PX has to have a
density with respect to the Lebesgue measure. Considering the proof this condition can be
slightly weakened to the assumption that every d−1-dimensional subset of X has measure
zero. Although it would be desirable to exclude only probability measures with discrete
components it is almost obvious that such a condition cannot be sufficient for d > 1 (cf. [10,
p.32]). The assumption that P is noisy and non-degenerate is far more less restrictive since
neither completely noise-free P nor noisy problems with only “coin-flipping” noise often
occur in practice. Finally, the condition that (H,P ) is non-trivial is more or less implicitly
assumed whenever one uses nontrivial classifiers.

Example 3.6 Theorem 3.5 directly applies to polynomial kernels. Note, that the limit
RL,P,H depends on both P and the choice of the kernel.

Example 3.7 Let k be a Gaussian RBF kernel with RKHS H and X be a closed ball of
R

d. Moreover, let P and (λn) be according to Theorem 3.5. Recall, that k is universal and
hence (H,P ) is non-trivial iff P has two non-vanishing classes. Since k is also analytic on
R

d we find
#SV (fT,λn

)

n
→ 2RP .

Therefore, (4) shows that in general this L1-SVM produces sparser decision functions than
the L2-SVM and the LS-SVM based on a Gaussian RBF kernel (cf. also Theorem 3.11).

Remark 3.8 A variant of the L1-SVM that is often considered in theoretical papers is
based on the optimization problem (5) with a-priori fixed b := 0. Besides the constraint
∑n

i=1 yiαi = 0, which no longer appears, the corresponding dual problem is identical to
(6). Hence it is easily seen that Theorem 3.1 also holds for this classifier. Moreover, for
this modification Theorem 3.5 can be simplified. Namely, the assumption that P is noisy
and non-degenerate is superfluous (cf. [8, Prop. 33] to guarantee (14)). In particular, for a
Gaussian RBF kernel and noise-free problems P we then obtain

#SV (fT,λn
)

n
→ 0 , (7)

i.e. the number of support vectors increases more slowly than linearly. This motivates the
often claimed sparseness of SVM’s.

The following theorem shows that the lower bound (4) on #SV (fT,λn
) for the L2-SVM is

often asymptotically optimal. This result is independent of the used optimization algorithm
since we only consider universal kernels and measures with no discrete components.

Theorem 3.9 Let H be the RKHS of an analytic and universal kernel on BRd . Further-
more, let X ⊂ BRd be a closed ball and P be a probability measure on X × Y with
RP > 0 such that PX has a density with respect to the Lebesgue measure on X and
(H,P ) is non-trivial. Then for the L2-SVM using using a regularization sequence (λn)
which tends sufficiently slowly to 0 we have

#SV (fT,λn
)

n
→ SP

in probability.



Remark 3.10 For the L2-SVM with fixed offset b := 0 the assumption RP > 0 in the
above theorem is superfluous (cf. proof of Theorem 3.9 and proof of [8, Prop. 33]). In
particular, for a Gaussian RBF kernel and noise-free problems P we obtain (7), i.e. for
noise-free problems this classifier also tends to produce sparse solutions in the sense of
Remark 3.8.

Our last result shows that LS-SVM’s often tend to use almost every sample as a support
vector:

Theorem 3.11 Let H be the RKHS of an analytic and universal kernel on BRd . Further-
more, let X ⊂ BRd be a closed ball and P be a probability measure on X × Y such that
PX has a density with respect to the Lebesgue measure on X and (H,P ) is non-trivial.
Then for the LS-SVM using a regularization sequence (λn) which tends sufficiently slowly
to 0 we have

#SV (fT,λn
)

n
→ 1

in probability.

Remark 3.12 Note, that unlike the L1-SVM and the L2-SVM (with fixed offset) the LS-
SVM does not tend to produce sparse decision functions for noise-free P . This still holds
if one fixes the offset for L2-SVM’s, i.e. one considers regularization networks (cf. [11]).
The reason for the different behaviours is the margin as already observed in [12]: the
assumptions on H and P ensure that only a very small fraction of samples xi can be
mapped to ±1 by fT,λn

(cf. also Remark 4.1). For the L2-SVM this asymptotically ensures
that most of the samples are mapped to values outside the margin, i.e. yifT,λn

(xi) > 1,
(cf. the properties of Bn \ Aδ in the proof of Theorem 3.9) and it is well-known that such
samples cannot be support vectors. In contrast to this the LS-SVM has the property that
every point not lying on the margin is a support vector. Using the techniques of our proofs
it is fairly easy to see that the same reasoning holds for the hinge loss function compared
to “modified hinge loss functions with no margin”.

4 Proofs

Let L be a loss function and T be a training set. For a function f : X → R we denote the
empirical L-risk of f by

RL,T (f + b) :=
1

n

n
∑

i=1

L
(

yi(f(xi) + b)
)

.

Proof of Theorem 3.1: Let (fT,λn
, bT,λn

, ξ∗) ∈ H × R × R
n and α∗ ∈ R

n be solutions
of (5) and (6) for the regulariztion parameter λn, respectively. Since there is no duality gap
between (5) and (6) we have (cf. [4]):

λn〈fT,λn
, fT,λn

〉 +
1

n

n
∑

i=1

ξ∗i =

n
∑

i=1

α∗
i −

1

4λn

n
∑

i,j=1

yiyjα
∗
i α

∗
jk(xi, xj) (8)

By (2) this yields

1

n

n
∑

i=1

ξ∗i ≤ 2λn〈fT,λn
, fT,λn

〉 +
1

n

n
∑

i=1

ξ∗i =

n
∑

i=1

α∗
i .

Furthermore, recall that λn → 0 and nλ2
n/ log n → ∞ implies

1

n

n
∑

i=1

ξ∗i = RL,T (fT,λn
+ bT,λn

) → RL,P,H (9)



in probability for n → ∞ (cf. [9]) and hence for all ε > 0 the probability of
n

∑

i=1

α∗
i ≥ RL,P,H − ε (10)

tends to 1 for n → ∞. Now let us assume that our training set satisfies (10). Since
α∗

i ≤ 1/n we then find

RL,P,H − ε ≤

n
∑

i=1

α∗
i ≤

∑

α∗

i 6=0

1

n
=

1

n
#SV (fT,λn

)

which finishes the proof.

For our further considerations we need to consider the optimization problem (1) with re-
spect to P , i.e. we treat the (solvable, see [8]) problem

(fP,λ, bP,λ) := arg min
f∈H
b∈R

λ‖f‖2
H + RL,P (f + b) . (11)

Proof of Theorem 3.5: Since H is the RKHS of an analytic kernel every function f ∈ H is
analytic. Using the holomorphic extension of a non-constant f ∈ H we see (after a suitable
complex linear coordinate change, cf. [10, p. 31f]) that for c ∈ R and x1, . . . , xd−1 ∈ R the
equation f(x1, . . . , xd−1, xd) = c has at most j solutions xd, where j ≥ 0 is locally (with
respect to x1, . . . , xd−1 ∈ R) constant . By a simple compactness argument we hence find

PX

(

{x ∈ X : f(x) = c}
)

> 0 ⇒ f(x) = c PX -a.s. (12)

for all f ∈ H and all c ∈ R. Now, let us suppose that

PX

(

{x ∈ X : fP,λ(x) + bP,λ = fP (x)}
)

> 0 (13)

for some λ > 0, where fP denotes the Bayes decision function. Then we may assume
without loss of generality that PX

(

{x ∈ X : fP,λ(x)+bP,λ = 1}
)

> 0 holds. By (12) this
leads to fP,λ(x) + bP,λ = 1 PX -a.s. However, since RL,P (fP,λ + bP,λ) → RL,P,H for
λ → 0 (cf. [9]) we see that fP,λ cannot be constant for small λ since (H,P ) was assumed
to be non-trivial. Therefore (13) cannot hold for small λ > 0 and hence we may assume
without loss of generality that

PX

(

{x ∈ X : |fP,λ(x) + bP,λ − fP (x)| = 0}
)

= 0

holds for all λ > 0. We define Aδ(λ) :=
{

x ∈ X : |fP,λ(x) + bP,λ − fP (x)| ≤ δ
}

for δ, λ > 0. Our above considerations show that for all λ > 0 there exists a δ > 0
with PX(Aδ(λ)) ≤ ε. We write δλ := 1

2 sup{δ > 0 : PX(Aδ(λ)) ≤ ε}. We first show
that there exists no sequence λn → λ 6= 0 with δλn

→ 0. Let us assume the converse.
Then there exists a subsequence with (fP,λnj

, bP,λnj
) → (fP,λ, bP,λ) weakly and we have

lim supj→∞ A3δλnj
(λnj

) ⊂ A0(λ). By the construction we have PX(A3δλnj
(λnj

)) ≥ ε

and hence PX(lim supj→∞ A3δλnj
(λnj

)) ≥ ε by the Lemma of Fatou. This gives the

contradiction PX(A0(λ)) ≥ ε. Thus, the increasing function λ 7→ m(λ) := inf{δλ̃ : λ̃ ≥
λ} satisfies m(λ) > 0 for all λ > 0. We fix a T = ((x1, y1), . . . , (xn, yn)) with

‖fT,λn
+ bT,λn

− fP,λn
− bP,λn

‖
∞

≤ δn , (14)
∣

∣RL,T (fT,λn
+ bT,λn

) −RL,P (fP,λn
+ bP,λn

)
∣

∣ ≤ ε (15)

and
∣

∣{i : xi ∈ Aδn
(n))}

∣

∣ ≤ 2εn. If m4(λn)λ3
nn → ∞ the results of [9] and [8] ensure,

that the probability of such a T converges to 1 for n → ∞. Moreover, by (8) we find

2λn〈fT,λn
, fT,λn

〉 + RL,T (fT,λn
+ bT,λn

) =

n
∑

i=1

α∗
i . (16)



Since fT,λn
+ bT,λn

and fP,λn
+ bP,λn

minimize the regularized risks, (15) implies
∣

∣

∣
λn‖fT,λn

‖2
H +RL,T (fT,λn

+bT,λn
)−λn‖fP,λn

‖2
H −RL,P (fP,λn

+bP,λn
)
∣

∣

∣
≤ ε . (17)

Furthermore, if n → ∞ we have

λn‖fP,λn
‖2

H + RL,P (fP,λn
+ bP,λn

) → RL,P,H (18)

(cf. [9]) and therefore we obtain
∣

∣λn‖fT,λn
‖2

H + RL,T (fT,λn
+ bT,λn

) − RL,P,H

∣

∣ ≤ 2ε
for large n. Now, (15), (17) and (18) implies λn〈fT,λn

, fT,λn
〉 ≤ 3ε for large n. Hence

(16) yields

RL,P,H + 5ε ≥

n
∑

i=1

α∗
i (19)

if n is sufficiently large. Now let us suppose that we have a sample (xi, yi) of T with
xi 6∈ Aδn

(n). Then we have |fP,λn
(xi) + bP,λn

− fP (xi)| > δn and hence fT,λn
(xi) +

bT,λn
6= ±1 by (14). By [4, p. 107] this means either α∗

i = 0 or α∗
i = 1/n. Therefore, by

(19) we find

RL,P,H + 5ε ≥

n
∑

i=1

α∗
i ≥

n
∑

xi 6∈Aδn (n)

α∗
i =

1

n

∣

∣{i : xi 6∈ Aδn
(n) and α∗

i 6= 0}
∣

∣

Since we have at most 2εn samples in Aδn
(n) we finally obtain

1

n
#SV (fT,λn

) ≤ RL,P,H + 7ε .

Now the assertion follows by Theorem 3.1.

Remark 4.1 The proof of Theorem 3.5 is based on a kind of paradox: recall that it was
shown in [8] that

fT,λn
+ bT,λn

→ fP

on
{

x ∈ X : P (1|x) 6∈ {0, 1/2, 1}
}

in probability. However, the assumption on both H
and P ensures that for typical T the sets

{

x ∈ X : |fT,λn
(x) + bT,λn

− fP (x)| ≤ δ
}

become arbitrarily small for δ → 0. We will apply these seemingly contradicting properties
in the following proofs, too.

Proof of Theorem 3.9: Let N := {x ∈ X : 0 < P (1|x) < 1} be the subset of X where P
is noisy. Furthermore, let Aδ(n) be defined as in the proof of Theorem 3.5. We write

Bδ(n) :=
{

x ∈ C1 \ N : fP,λn
(x) + bP,λn

≥ 1 − δ
}

∪
{

x ∈ C−1 \ N : fP,λn
(x) + bP,λn

≤ −1 + δ
}

.

By [8, Thm. 22]) for all n ≥ 1 there exists a δ > 0 with PX(Bδ(n)) ≥ PX(X \ N) − ε.
We define δn := 1

2 sup{δ > 0 : PX(Aδ(n)) ≤ ε and PX(Bδ(n)) ≥ PX(X \N)− ε}. Let
us fix a training set T = ((x1, y1), . . . , (xn, yn)) with

‖fT,λn
+ bT,λn

− fP,λn
− bP,λn

‖
∞

≤ δn ,
∣

∣{i : xi ∈ Bδ(n) \ Aδn
(n)}

∣

∣ ≥ n
(

PX(X \ N) − 3ε
)

.

Again, the probability of such T converges to 1 for n → ∞ whenever (λn) converges
sufficiently slowly to 0. In view of (4) it suffices to show that every sample xi ∈ Bδ(n) \
Aδn

(n) cannot be a support vector. Given an xi ∈ Bδ(n)\Aδn
(n) we may assume without

loss of generality that xi ∈ C1. Then xi ∈ Bδ(n) implies fP,λn
(xi)+bP,λn

≥ 1−δn while
xi 6∈ Aδn

(n) yields |fP,λn
(xi)+bP,λn

−1| > δn. Hence we find fP,λn
(xi)+bP,λn

> 1+δn

and thus fT,λn
(xi)+bT,λn

> 1. By the Karush-Kuhn-Tucker conditions of the primal/dual
optimization problem of the L2-SVM (cf. [4, p. 105]) this shows that xi is not a support
vector.



Proof of Theorem 3.11: Let Aδ(n) and δn be defined as in the proof of Theorem 3.5. With-
out loss of generality we may assume δn ∈ (0, 1/2). Let us define C0 := {x ∈ X :
P (1|x) = 1/2} and

Dn =
{

x ∈ C0 : |fP,λn
(x) + bP,λn

| ≤ 1/2
}

.

By [8, Thm. 22] we may assume without loss of generality that PX(Dn) ≥ PX(C0) − ε
for all n ≥ 1. Now, let us fix a training set T = ((x1, y1), . . . , (xn, yn)) with

‖fT,λn
+ bT,λn

− fP,λn
− bP,λn

‖
∞

≤ δn
∣

∣{i : xi ∈ Aδn
(n)}

∣

∣ ≤ 2 ε n
∣

∣{i : xi ∈ Dn}
∣

∣ ≥ n
(

PX(C0) − 2ε
)

.

Again, the probability of such T converges to 1 for n → ∞ whenever (λn) converges
sufficiently slowly to 0. Now let us consider a sample xi ∈ (X \ Aδn

(n)) ∩ C1 of T .
Then we have |fP,λn

(xi) + bP,λn
− 1| > δn and hence fT,λn

(xi) + bT,λn
6= 1. By [8,

Cor. 32] this shows that xi is a support vector. Obviously, the same holds true for samples
xi ∈ (X \ Aδn

(n)) ∩ C−1. Finally, for samples xi ∈ Dn we have |fT,λn
(xi) + bT,λn

| ≤
1/2 + δn < 1 and hence these samples are always support vectors.
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