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Abstract

To provide a compact generative representation of the sequential activ-
ity of a number of individuals within a group there is a tradeoff between
the definition of individual specific and global models. This paper pro-
poses a linear-time distributed model for finite state symbolic sequences
representing traces of individual user activity by making the assump-
tion that heterogeneous user behavior may be ‘explained’ by a relatively
small number of common structurally simple behavioral patterns which
may interleave randomly in a user-specific proportion. The results of an
empirical study on three different sources of user traces indicates that
this modelling approach provides an efficient representation scheme, re-
flected by improved prediction performance as well as providing low-
complexity and intuitively interpretable representations.

1 Introduction

The now commonplace ability to accurately and inexpensively log the activity of individ-
uals in a digital environment makes available a variety of traces of user activity and with
it the necessity to develop efficient representations, or profiles, of individuals. Most of-
ten, such recordings take the form of streams of discrete symbols ordered in time. The
modelling of time dependent sequences of discrete symbols employingn’th order Markov
chains has been extensively studied in a number of domains. The representation provided
by such models is global in the sense that it is assumed that one global generating pro-
cess underlies all observed sequences. To capture the possible heterogeneous nature of the
observed sequences a model with a number of differing generating processes needs to be
considered. Indeed the notion of a heterogeneous population, characterized for example by
occupational mobility and consumer brand preferences, has been captured in theMover-
Stayermodel [3]. This model is a discrete time stochastic process that is a two component
mixture of first order Markov chains, one of which is degenerate and possesses an identity
transition matrix characterizing thestayersin the population. The original notion of a two-
component mixture of Markov chains has recently been extended to the general form of a
mixture model of Markov chains in [2]. Whilst the main motivation was the visualization
of the class structure inherent in the browsing patterns of visitors to a commercial website,
each class of users being characterized by their global behavior, such mixture models will



notbe appropriate for identifying the shared behavioral patterns which are the basis of mul-
tiple relationships between users and groups of users and which may yield a more realistic
model of the population.

The purpose of this paper is to develop a dynamic user model for individuals within a
group that explicitly captures the assumption of the existence of a common set of behav-
ioral patterns which can be estimated from all observed users along with their user-specific
proportion of participation and these form the basis of individual profiles within a group.
This is also a computationally attractive model, as simple structural characteristics may be
assumed at the generative level, while allowing them to interleave randomly can account
for more complex individual behavior. The resulting model is thus a distributed dynamic
model which benefits from the recent technical developments in distributed parts based
modelling of static vectorial data [7, 9, 5, 1, 8], with various applications including im-
age decomposition, document modelling, information retrieval and collaborative filtering.
Consistent generative semantics similar to the recently introduced latent Dirichlet alloca-
tion (LDA) [1] will be adopted and by analogy with [8] the resulting model will be referred
to as a simplicial mixture.

2 Simplicial Mixtures of Markov Chains

Assume that a sequence ofL symbolssLsL−1, · · · , s0, denoted bys, can be drawn
from a dictionaryS by a processk, which has initial state probabilityP1(k) and has
|S|m+1 state transition probabilities denoted byT (sm, · · · , s1 → s0|k). The number
of times that the symbols0 follows from the state defined by them-tuple of symbols
sm, · · · , s1 within the n-th sequence is denoted asrsm,··· ,s1→s0

n and so the probabil-
ity of the sequence of symbols under thek’th m-th order Markov process isP (s|k) =
P1(k)

∏|S|
sm=1 · · ·

∏|S|
s0=1 T (sm, · · · , s1 → s0|k)rsm,··· ,s1→s0 . To introduce a more com-

pact notation we represent the elements of the state transition matrix for thek’th Markov
process byTm···0,k and the countsrsm,··· ,s1→s0 within the n’th observed sequence as
rm···0
n . In addition, we employStart andStop states in each symbol sequencesn and

incorporate the initial state distribution of theStart state as the transition probabilities
from this state within the state transition matrixTk. We denote the set of all state transi-
tion matrices{T1, · · · , Tk, · · · , TK} asT. Suppose that we are given a set of symbolic
trajectories{sn}n=1:N over a common finite state space, each having lengthLn. As op-
posed and somewhat complementary to cluster models for trajectories which try to model
inter-sequence heterogeneities, our intuition is that sequences over a common finite state
space, provided they are sufficiently long and possibly non-stationary, could have several
randomly interleaved generator processes, some of which might be common to several
sequences. To account for this idea, we will adopt a similar modelling strategy to LDA.

The complete generative semantics of LDA allows us to describe the process of sequence
generation where mixing componentsλ = [λ1, · · · , λk, · · · , λK ] are K-dimensional
Dirichlet random variables and so are drawn from theK − 1 dimensional simplex defined
by the Dirichlet distributionD(λ|α) with parametersα. These are then combined with the
individual state-transition probabilitiesTk, which are model parameters to be estimated,
and yield the symbol transition probabilitiesTm···0 =

∑K
k=1 Tm···0,kλk. The overall prob-

ability for a sequencesn under such a mixture, which we shall now refer to as a simplicial
mixture [8], denoted asP (sn|T,α) is equal to

∫

4
P (sn|T, λ)D(λ|α)dλ =

∫

4
dλD(λ|α)

|S|∏
sm=1

· · ·
|S|∏

s0=1

{
K∑

k=1

Tm···0,kλk

}rm···0
n

(1)

Each sequence will have its own expectation under the Dirichlet mixing coefficients and



sothe ability of such a representation to model intra-sequence heterogeneity emerges nat-
urally.

The following subsections briefly present the details of the identification of this model,
which also highlights the close relationship between two existing related models, specifi-
cally the probabilistic latent semantic analysis (PLSA) [5] and LDA [1] as being instances
of the same theoretical model and differing only in the estimation procedure adopted [4].

2.1 Parameter Estimation and Inference

Exact inference within the LDA framework is not possible [1], however the likelihood can
be lower-bounded by introducing a sequence specific parameterised variational posterior
Qn(λ) whose parameters will depend onn

log P (sn|T,α) ≥ EQn(λ)

[
log

{
P (sn|T, λ)

D(λ|α)
Qn(λ)

}]
(2)

WhereE
Qn(λ)

denotesexpectation with respect toQn(λ). The bound can be defined using

theMaximum a Posteriori(MAP) estimator, such thatQn(λ) = δ(λ − λMAP
n ), in which

case (2) is equal tolog P (sn|T, λMAP
n ) + logD(λMAP

n |α) +Hδ whereHδ denotes the
entropy of the delta function aroundλMAP

n (which can be discarded in this setting as it
does not depend on the model parameters, although it amounts to minus infinity). Forming
a Lagrangian from the above to enforce the constraint thatλMAP is a sample point from a
Dirichlet variable then taking derivatives with respect to theλMAP

k , a convergent series of
updatesλt

kn is obtained where the superscript denotes thet’th iteration. As in [7], for each
observed sequence in the sample a MAP value for the variableλ is iteratively estimated by
the following multiplicative updates

λ̃kn = (αk−1)+λt
kn

|S|∑
sm=1

· · ·
|S|∑

s0=1

rm···0
n

Tm···0,k∑K
l=1 Tm···0,lλt

ln

; λt+1
kn =

λ̃kn

Ln +
∑

k(αk − 1)
(3)

whereLn =
∑

sm···s0
rm···0
n is the length of the sequencesn. Once the MAP valuesλMAP

n
for eachsn are obtained a similar multiplicative iteration for the transition probabilities can
be obtained

T̃m···0,k = T t
m···0,k

N∑
n=1

rm···0
n

λMAP
kn∑K

l=1 T t
m···0,lλ

MAP
ln

; T t+1
m···0,k =

T̃m···0,k∑|S|
s′0=1 T̃m···0′,k

(4)

The final parameter is that of the prior Dirichlet distribution, maximum likelihood estima-
tion yields the estimated distribution parametersα given theλMAP

n [6, 1]. Note that both
(3) and (4) require an elementwise matrix multiplication and division so these iterations
will scale linearly with the number of non-zero state-transition counts. It is interesting to
note that the MAP estimator under a uniform Dirichlet distribution exactly recovers the
aspect mixture modelof [5] as a special case of the MAP estimated LDA model.

2.1.1 Variational Parameter Estimation and Inference

While being optimal in analyzing an existing data set, MAP estimators are notoriously
prone to overfitting, especially where there is a paucity of available data [10] and so the
variational Bayes (VB) approach detailed in [1] can be adopted by consideringQn(λ) =
D(λ|γn), whereγn is a sequence-specific variational free parameter vector. The above (2)
can be further lower-bounded by noting that

log P (sn|T,λ) ≥
|S|∑

sm=1

· · ·
|S|∑

s0=1

K∑

k=1

rm···0
n Qm···0,n(k) log

{
λk

Tm···0,k

Qm···0,n(k)

}
(5)



where
∑

k Qm···0,n(k) = 1, Qm···0,n(k) ≥ 0 are additional variational parameters. Al-
ternatively,Qm···0,n(.) can also be understood as a variational distribution on a discrete
hidden variable withK possible outcomes that selects which transition matrix is active at
each time step of the generative process.

Replacing (5) in (2), expanding and evaluatingED(λ|γn)
[log λk] = ψ(γk)− ψ(

∑
k′ γk′),

whereψ denotes the digamma function, then solving forQm···0,n(k) andγkn and finally
combining yields the following multiplicative iterative update for the sequence specific
variational free parameterγn

γt+1
kn = αk + exp{ψ(γt

kn)}
|S|∑

sm=1

· · ·
|S|∑

s0=1

rm···0
n

Tm···0,k∑K
k′=1 Tm···0,k′ exp{ψ(γt

k′n)}
(6)

Solving for the transition probabilities and combining with the fixed point solutions for
eachQm···0,n(k) yields the following

T̃m···0,k = T t
m···0,k

N∑
n=1

rm···0
n

exp{ψ(γt
kn)}∑K

k′=1 T t
m···0,k′ exp{ψ(γt

k′n)}
; T t+1

m···0,k =
T̃m···0,k∑
s′0

T̃m···0′,k
(7)

As before the parameters of the prior Dirichlet distributionα given the variational param-
etersγn are estimated using standard methods [6, 1].

2.2 Prediction with Simplicial Mixtures

The predictive probability of observing symbolsnext given a sequence ofL symbols
sn = {sLn , · · · , s1} is given asP (snext|sn) = E

P (λ|sn)
{P (snext|sm · · · s1,λ)} ≈

∑K
k=1 T (snext|sm · · · s1, k)EQn(λ){λk}. It should be noted that whilem-th order Markov

chains form the basis of the representation, the resulting simplicial mixture is notm-th or-
der Markov with any global transition model. Rather it approximates the individualm-th
order models while keeping the generative parameter set compact. Them-th order infor-
mation of each individual’s past behaviour is embodied in the individual-specific latent
variable estimate. On the other hand in a mixture model one component is responsible
for sequence generation so within a cluster the representation is still globalm-th order.
Employing the MAP approximation for the Dirichlet distribution thenE

Qn(λ)
{λk} =

Eδ(λ−λMAP
n ){λk} = λMAP

kn whereλMAP
kn is thek-th dimension ofλMAP

n . Employing the

variational Dirichlet approximation thenEQn(λ){λk} = ED(λ|γn){λk} = γkn/
∑K

l=1 γln

therefore given a new sequencesnew, the symbolsnext which is most likely to be predicted
from the model as a suggested continuation of the sequence, is the maximum argument of
P (snext|sn).

3 Distributed Modelling of Dynamic Profiles

3.1 Datasets

3.1.1 Telephone Usage Modelling

The ability to model the usage of a telephone service is of importance at a number of lev-
els, e.g. to obtain a predictive model of customer specific activity and service usage for
the purposes of service provision planning, resource management of switching capacity,
identification of fraudulent usage of services. A representative description can be based on
the distribution of the destination numbers dialled and connected by the customer, in which



casea multinomial distribution over the dialling codes can be employed. One method of
encoding the destination numbers dialled by a customer is to capture the geographic loca-
tion of the destination, or the mobile service provider if not a land based call. This is useful
in determining the potential demand placed on telecommunication switches which route
traffic from various geographical regions on the service providers network. Two weeks
of transactions from a UK telecommunications operator were logged during weekdays,
amounting to 36,492,082 and 45,350,654 transactions in each week respectively. All trans-
actions made by commercial customers in the Glasgow region of the UK were considered
in this study. This amounts to 1,172,578 transactions from 12,202 high usage customers
in the first week considered and 1,753,304 transactions being made in the following week.
The mapping from dialling number to geographic region or mobile operator was encoded
with 87 symbols amounting to a possible 7,569 symbol transitions. Each customers activity
is defined by a sequence of symbols defining the sequence of calls made over each period
considered and these are employed to encode activity in a customer specific generative
representation.

3.1.2 Web Page Browsing

The second data set used in this study is a selected subset of the msnbc.com user navigation
collection employed in [2]. Sequences of users who visited at least 9 of the overall 17
page categories (frontpage, news, tech, local, opinion, on-air, misc,weather, msn-news,
health, living, business, msn-sports, sports, summary, bbs, travel) have been retained, this
selection criteria is motivated by the observation that there would be little scope in trying
to model interleaved dynamic behavior in observables which are too short to reveal any
intra-sequence heterogeneity. The resulting data set, referred to as WEB, totals 119,667
page requests corresponding to 1,480 web browsing sessions.
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Figure1: Left: percentage of incorrect predictions against the number of model factors;
right: predictive perplexity of each model against model order for the PHONE dataset.
Solid straight line: global first order MC, dash: MAP estimated simplicial mixture, solid
line: VB estimated simplicial mixture, dash-dot: mixture model.

3.2 Results

In each experiment the objective assessment of model performance is evaluated by the
predictive perplexity,exp{−1/N

∑Ntest

m=1 log P (snext|sm)}. In addition, the predictive ac-
curacy of all models is measured under a 0-1 loss. Given a number of previously unob-
served truncated sequences, the number of times the model correctly predicts the symbol
which follows in the sequence is then counted. In all mixture models naive random ini-
tialization of the parameters was employed and parameter estimation was halted when the



1 2

1

2

3

4

5

En
tro

py
 R

at
e 

( b
its

 )

Simplicial Model                 Mixture Model
5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(k)

∫ λ
k P

(λ
|γ n)d

λ

Figure2: Left: distribution of entropy rates for the transition matrices of a 20-factor mixture
and simplicial mixture models (VB). Right: the expected value of the Dirichlet variable
under the variational approximation for one customer indicating the levels of participation
in factor specific behaviors.

in-sample likelihood did not improve by more than 0.001%, no annealing or early stopping
was utilized, fifteen randomly initialized parameter estimation runs for each model were
performed. The number of mixture components for the models ranged from 2 up to 200. On
the PHONE data set the parameters of a global first-order Markov chain (bigram), mixtures
of Markov chains [2], and simplicial mixtures of Markov chains (using both the MAP and
VB estimation procedures) are estimated using the first week of customer transactions and
the predictive capabilities of the models are assessed on the transactions from the follow-
ing week. The results are summarized in Figure 1, from the predictive perplexity measures
it is clear that the simplicial representation provides a statistically (tested at the 5% level
using a Wilcoxon Rank Sum test) and practically significant reduction in perplexity over
the global and mixture models. This is also reflected in the levels of prediction error under
each model, however the mixture models tend to perform slightly worse than the global
model. As expected the MAP estimated simplicial model performs slightly worse than that
obtained using VB [1]. This also provides an additional insight as to why LDA models
improve upon PLSA, as they are in fact both the same model using different approxima-
tions to the likelihood, refer to [10] for an illustrative discussion on the weaknesses of MAP
estimators. As a comparison to different structural models hidden Markov models with a
range of hidden states were also tested on this data set the best results obtained were for a
ten state model which achieved a predictive perplexity score of (mean±standard-deviation)
11.119± 0.624 and fraction prediction error of 0.674± 0.959, considerably poorer than
that obtained by the models considered here.

In addition to the predictive capability of a simplicial representation of a customers activity
the cost of encoding such a representation can be assessed by measuring the entropy rate
of each of the constituent transition matrices which act as a basis in the representation
of the individual specific generative process. The left hand plot of Figure (2) shows the
distribution of the entropy rates for the transition probabilities in twenty factor simplicial
and mixture models, the results are obtained from fifty randomly initialized estimation
procedures. The entropy rates for the simplicial mixture are significantly lower than that
of a mixture model indicating that the basis of each representation describes a number of
simpler processes.

The final experiment demonstrated considers the WEB data set. The results of ten-fold
cross-validated predictive perplexities again show statistically significant improvement ob-
tained with the VB-estimated simplicial mixture (again tested using the ranksum Wilcoxon
test at the 5% level). The results are summarized in Figure 3. Five of the estimated tran-
sition factors of a twenty-factor model are shown in Figure 4, demonstrating once more
that the proposed model creates a low entropy and an easily interpretable dynamic factorial
representation. The numbers on the axes on these charts correspond to the 17 page cat-



egories enumerated earlier and the average strength of each of these factors amongst the
full set of twenty factors computed as1N

∑N
n=1 ED(λ|γn){λk} is also given above each

chart. We can see that a behavioral feature manifested is a keen interest to visit pages about
‘news’ along with a quite dynamic transition model (left hand chart) which characterizes
around 12% of the behavioral patterns of the entire user population under consideration
while static state-repetition (second chart) or an almost exclusive interest in viewing the
homepage (last chart) etc represent also relatively strong common characteristics of brows-
ing behavior. The distribution of the entropy rates of the full set of these twenty basis-
transitions in comparison to those obtained from the mixture model is given on the right
hand plot of Figure 3. Clearly, the coding efficiency of a simplicial mixture representa-
tion is significantly (statistically tested) superior. Note also these basis-transitions embody
correlated transitions (transitions which appear in similar dynamical contexts and so have
similar functionality), as can be seen from the multiplicative nature of the equations used
for identifying the model. It is not surprising then that state repetitions or transitions which
express focused interest in one of the topic categories appear together on distinct factors.
We can also see a joint interest in msnnews and msnsport being present together on the 4-th
chart of Figure 4 — indeed, as the prefix of these page categories also indicates, these are
related page categories.
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Figure 3: Left: the predictive perplexity for the WEB data (straight line: global first-
order Markov chain, dash-dot: mixture of Markov chains, dotted line: simplicial mixture
estimated by MAP, solid line: simplicial mixture estimated by VB). Right: the distribution
of entropy rates.

4 Conclusions

This paper has presented a linear time method to model finite-state sequences of discrete
symbols which may arise from user or customer activity traces. The main feature of the
proposed approach has been the assumption that heterogeneous user behavior may be ‘ex-
plained’ by the interleaved action of some structurally simple common generator processes.
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Figure4: State transition matrices of selected factors from a 20-factor run on WEB.



An empirical study has been conducted on tworeal-worldcollections of user activity which
has demonstrated this to be an efficient representation, revealed by both objective measures
of prediction performance, low entropy rates, and interpretable representations of the user
profiles provided.
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