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Abstract

In pattern classification tasks, errors are introduced because of differ-
ences between the true model and the one obtained via model estimation.
Using likelihood-ratio based classification, it is possible to correct for this
discrepancy by finding class-pair specific terms to adjust the likelihood
ratio directly, and that can make class-pair preference relationships in-
transitive. In this work, we introduce new methodology that makesnec-
essarycorrections to the likelihood ratio, specifically those that are nec-
essary to achieve perfect classification (but not perfect likelihood-ratio
correction which can be overkill). The new corrections, while weaker
than previously reported such adjustments, are analytically challenging
since they involve discontinuous functions, therefore requiring several
approximations. We test a number of these new schemes on an isolated-
word speech recognition task as well as on the UCI machine learning
data sets. Results show that by using the bias terms calculated in this
new way, classification accuracy can substantially improve over both the
baseline and over our previous results.

1 Introduction

Statistical pattern recognition is often based on Bayes decision theory [4], which aims to
achieve minimum error rate classification. In previous work [2], we observed that multi-
class Bayes classification can be viewed as a tournament style game, where the winner
between players is decided using log likelihood ratios. Supposing the classes (players) are
{c1, c2, · · · , cM}, and the observation (game) isx, the winner of each pair of classes is
determined, with the assumption of equal priors, by the sign of the log likelihood ratio
Lij(x) = ln P (x|ci)

P (x|cj)
, in which case ifLij > 0 classci wins and otherwise classcj wins.

A practical game strategy can be obtained by fixing a comparison order,{i1, i2, · · · , iM},
as a permutation of{1, 2, · · · ,M}, where classci1 plays with classci2 , the winner plays
with classci3 , and so on until a final winner is ultimately found. This yields a transitive
game [8] — assuming no ties, the ultimate winner is identical regardless of the comparison
order.

To perform these procedures optimally, correct likelihood ratios are needed, which requires
correct probabilistic models and sufficient training data. This is never the case given a fi-



nite amount of training data or the wrong model family, typical in practice. In previous
work [2], we introduced a method to correct for the difference between the true and an
approximate log likelihood ratio. In this work, we improve upon the correction method by
using an expression that can still lead to perfect correction, but is weaker than what we used
before. We show that this new condition can achieve a significant improvement over base-
line results, both on a medium vocabulary isolated-word automatic speech recognition task
and on the UCI machine learning data sets. The paper is organized as follows: Section 2
describes the general scheme and describes past work. Section 3 discusses the weaker cor-
rection condition, and its approximations. Section 4 provides various experimental results
on an isolated-word speech recognition task. Section 5 contains the experimental results
on the UCI data. Finally, Section 6 concludes.

2 Background

A common problem in many probabilistic machine learning settings is the lack of a cor-
rect statistical model. In a generative pattern classification setting, this occurs because
only an estimated quantitŷP (x|c)1 of a distribution is available, rather than the true class-
conditional modelP (x|c). In the likelihood ratio decision scheme described above, only
an imperfect log likelihood ratio,̂Lij(x) = ln(P̂ (x|ci)/P̂ (x|cj)), is available for decision
making rather than the true log likelihood ratioLij(x).

One approach to correct for this inaccuracy is to use richer class conditional likelihoods,
more complicated parametric forms ofLij(x) itself, and/or more training data. In previous
work [2], we proposed a different approach that requires no change in generative models,
no increase in free parameters, and no additional training data but still yields improved
accuracy. The key idea is to compensate for the difference betweenLij(x) and L̂ij(x)
using abias2 termαij(x) computed from test data such that:

Lij(x)− αij(x) = L̂ij(x). (1)

If it is assumed that a single bias term is used for all data, so thatαij(x) = αij , we found
that the bestαij is as follows:

αij =
1
2

(D(i‖j)−D(j‖i))− 1
2

(
D̂(i‖j)− D̂(j‖i)

)
, (2)

whereD(i‖j) = EP (x|ci) lnLij(x) is the Kullback-Leibler (KL) divergence [3] between

P (x|ci) andP (x|cj) andD̂(i‖j) = EP (x|ci)L̂ij(x) is its estimation. Under the assumption
(referred to asassumption Ain Section 3.1) of symmetric KL-divergence for the true model
(e.g., equal covariance matrices in the Gaussian case), the bias term can be solved explicitly
as

αij = −1
2

(
D̂(i‖j)− D̂(j‖i)

)
. (3)

We saw how the augmented likelihood ratioSij(x) = L̂ij(x) + αij can lead to an in-
transitive game [8, 13], sinceSij(x) can specify intransitive preferences amongst the set
{1, 2, · · · ,M}. We therefore investigated a number of intransitive game playing strate-
gies. Moreover, we observed that if the correction was optimal, the true likelihood ratios
would be obtained which are clearly transitive. We therefore hypothesized and experimen-
tally verified that the existence of intransitivity was a good indicator of the occurrence of a
classification error.

This general approach can be improved upon in several ways. First, better intransitive
strategies can be developed (for detecting, tolerating, and utilizing the intransitivity of a

1In this paper, we use “hatted” letters to describe estimated quantities.
2Note that bybias, we do not mean standard parameter bias in statistical parameter estimation.



classifier); second, the assumption of symmetric KL-divergence could be relaxed; and third,
the above criterion is stricter than required to obtain perfect correction. In this work, we
advance on the latter two of the above three possible avenues for improvement.

3 Necessary Intransitive Scheme

An αij(x) that solves Equation 1 is a sufficient condition for a perfect correction of the
estimated likelihood ratio since given such a quantity, the true likelihood ratio would be
attainable. This condition, however, is stricter than required because it is only the sign of
the likelihood ratio that is needed to decide the winning class. We therefore should ask for
a condition that corrects only for the discrepancy in sign between the true and estimated
ratio, i.e., we want to find a functionαij(x) that minimizes

J [αij ] =
∫

Rn

{
sgn[Lij(x)− αij(x)]− sgn̂Lij(x)

}2

· Pij(x) dx.

Clearly theαij(x) that minimizesJ [αij ] is the one such that

sgn[Lij(x)− αij(x)] = sgn̂Lij(x), ∀x ∈ suppPij = {x : Pij(x) 6= 0}. (4)

As can be seen, this condition is weaker than Equation 1, weaker in the sense that any
solution to Equation 1 solves Equation 4 but not vice versa. Note also that Equation 4
providesnecessaryconditions for an additive bias term to achieve perfect correction, since
any such correction must achieve parity in the sign. Therefore, it might make it simpler
to find a better bias term since Equation 4 (and therefore, set of possibleα values) is less
constrained. As will be seen, however, analysis of this weaker condition is more difficult.
In the following sections, therefore we introduce several approximations to this condition.

Note that as in previous work, we henceforth assumeαij(x) = αij is a constant. In this
case, the equation providing the bestαij values is:

EPij {sgn[Lij(x)− αij ]} = EPij

{
sgn̂Lij(x)

}
. (5)

3.1 The difficulty with the sign function

The main problem in trying to solve forαij in Equation 5 is the existence of a discontinuous
function. In this section, therefore, we work towards obtaining an analytically tractable
approximation. The{−1, 0, 1}-valued sign function sgn(z) is defined as2u(z)− 1, where
u(z) is the Heaviside step function. We obtain an approximation via a Taylor expansion as
follows:

sgn(z+ ε) = sgn(z) + εsgn′(z) + o(ε) = sgn(z) + 2εδ(z) + o(ε), (6)

whereδ(z) is the Dirac delta function [7]. It can be defined as the derivative of the Heav-

iside step functionu′(z) = δ(z), and it satisfies the sifting property
∫

R
f(z)δ(z − z0) =

f(z0). Therefore, it follows that [6, page 263]∫
Rn

f(z)δ[g(z)] dz =
∫

Zg

f(z)
|∇g(z)|

· dµ,

where∇g is the gradient ofg andZg = {z ∈ Rn : g(z) = 0} is the zero set ofg with
Lebesgue measureµ [12].

Of course, the Taylor expansion is valid only for a differentiable function, otherwise the
error terms can be arbitrarily large. If, however, we find and use a suitable continuous and



differentiable approximation rather than the discrete sign function, the above expansion
becomes more appropriate. There exists a trade-off, however, between the quality of the
sign function approximation (a better sign function should yield a better approximation in
Equation 4) and the error caused by theo(ε) term in Equation 6 (a better sign function
approximation will have a greater error when the higher-order Taylor terms are dropped).
We therefore expect that ideally there will exist an optimal balance between the two. The
shifted sigmoid with free parameterβ (defined and used below) allows us to easily explore
this trade-off simply by varyingβ.

Retaining the first-order Taylor term, and applying this to the left side of Equation 5,

EPij sgn[Lij(x)− αij ] ≈ EPij sgnLij(x)− 2EPij αijδ [Lij(x)] .

The distribution under which the expectation in Equation 5 is taken can also influence our
results. If it is known that the true class ofx is alwaysci, theci-conditional distribution
should be used, i.e.,Pij(x) = P (x|ci), yielding a class-conditional correction termα(i)

ij ,

and a class-conditional likelihood-ratio correctionS
(i)
ij (x) = L̂ij(x)+α

(i)
ij . The symmetric

case arises whenx is of classcj . If, on the other hand, neitherci nor cj is the true classes
(i.e., x is sampled from some other class-conditional distribution, sayP (x|ck), k 6= i, j),
it does not matter which distribution forPij(x) is used since, for a given comparison order
in a game playing strategy, the current winner will ultimately play using the true class
distributionP (x|ck) of x (when one ofi or j will equalk). It is therefore valid to consider
only the case when eitherx is of classci (we denote this event byCi(x)) or whenx is of
classcj (eventCj(x)). Note that these two events are disjoint.

In practice, however, we do not know which of the two events is correct. The ideal choice
in either case can be expressed using indicators as follows:

Aij(x) = α
(i)
ij 1{Ci(x)} + α

(j)
ij 1{Cj(x)}.

Taking the expected value ofAij(X) with respect top(x|Ci(x) ∨ Cj(x)) yields

αij = Ep(x|Ci(x)∨Cj(x))[Aij(X)] =
α

(i)
ij P (ci) + α

(j)
ij P (cj)

P (ci) + P (cj)
.

This results in a single likelihood correctionSij(x) = L̂ij(x)+αij that is obtained simply
by integrating in Equation 5 with respect to the average distribution over classci andcj ,
i.e.,

Pij(x) ∆= p(x|Ci(x) ∨ Cj(x)) =
P (ci)P (x|ci) + P (cj)P (x|cj)

P (ci) + P (cj)
.

With these assumptions, and supposing the zero setZLij
= {x ∈ Rn : P (x|ci) =

P (x|cj)} of Lij(x) is Lebesgue measurable with measureµ, we get:∫
Rn

{sgnLij(x)− 2αijδ [Lij(x)]}Pij(x) dx =
∫

Rn

sgnLij(x)Pij(x) dx− 2Ψ(Pi, Pj)αij ,

where

Ψ(Pi, Pj) =
∫

Rn

Pij(x)δ [Lij(x)] dx =
∫

ZLij

Pij(x)
|∇Lij(x)|

· dµ. (7)

Therefore,

αij =
1

Ψ(Pi, Pj)

∫
Rn

[
sgnLij(x)− sgn̂Lij(x)

2

]
Pij(x) dx.



As can be seen,αij is composed of two factors, the integral and the1/Ψ(Pi, Pj) factor.
The integral is bounded between -1 and 1 and determines the direction of the correction.
WhenLij(x) andL̂ij(x) always agree, the integral is zero and there is no correction. The
correction favorsi whenαij is positive. This occurs whenLij is positive and̂Lij is negative
more often thanLij is negative and̂Lij is positive, a situation improved upon by givingi
“help.” Similarly, whenαij is negative, the correction biases towardsj.

The maximum amount of absolute likelihood correction possible is determined by the (al-
ways positive)1/Ψ(Pi, Pj) factor. This is affected by two quantities, the mass around and
the log-likelihood ratio gradient at the decision boundary. Low mass at the decision bound-
ary increases the maximum possible correction because any errors in the integral factor
are being de-weighted. High gradient at the decision boundary also increases the maxi-
mum possible correction because any decision boundary deviation causes a higher change
in likelihood ratio than if the gradient was low. Since we are correcting the likelihood ratio
directly, this needs to be reflected inαij .

WhenP (x|ci) andP (x|cj) are multivariate Gaussians with meansµi andµj , identical
covariance matricesΣ, and equal priors, this becomes:

Ψ(Pi, Pj) =
e−

1
8 (µi−µj)

T Σ−1(µi−µj)√
2π(µi − µj)T Σ−1(µi − µj)

As the means diverge from each other, both the mass at the decision boundary decreases
and the likelihood-ratio gradient increases, thereby increasing the maximum amount of
correction.

Unfortunately, it is quite difficult to explicitly evaluateΨ(Pi, Pj) without knowing the true
probability distributions. In this initial work, therefore, our investigations simplify by only
computing the direction and not the magnitude of the correction. As will be seen, this
assumption yields a likelihood-ratio adjustment that is similar in form to our previous KL-
divergence based adjustment. More practically, the assumption significantly simplifies the
derivation and still yields reasonable empirical results. Under this assumption, expression
for αij becomes:

αij =
1
2
EPij(x)[sgnLij(x)]− 1

2
EPij(x)[sgn̂Lij(x)]. (8)

The left term on the right of the equality is quite similar to the left difference on the right
of the equality in the KL-divergence case (Equation 2). Again, because we have no infor-
mation about the true class conditional models, we assume the left term in Equation 8 to
be zero (denote this as assumptionB). Comparing this with the corresponding assumption
for the KL-divergence case (assumptionA, Equations 2 and 3), it can be shown that 1) they
are not identical in general, and 2) in the Gaussian case,A impliesB but not vice versa,
meaningB is weaker thanA.

Under assumptionB, an expression for the resultingαij can be derived using the weak law
of large numbers yielding:

αij ≈
1

2(Ni + Nj)

 ∑
x∈Ci

sgnln
P̂ (x|cj)
P̂ (x|ci)

−
∑

x∈Cj

sgnln
P̂ (x|ci)
P̂ (x|cj)

 , (9)

wherex ∈ Ci andx ∈ Cj correspond to the samples as they are classified in a previous
recognition pass;Ni andNj are number of samples from modelci andcj respectively. One
can immediately see the similarity between this equation and the one using KLD [2].

Like in [2], since the true classes are unknown, we perform a previous classification pass
(e.g., using the original likelihood ratios) to get estimates and use these in Equation 9.



Note that there are three potential sources of error in the analysis above. The first is the
Ψ(Pi, Pj) factor that we neglected. The second is assumptionB, that (since weaker) can
be less severe than in the corresponding KL-divergence case. The third is the error due to
the discontinuity of the sign function. To address the third problem, rather than using the
sign function in Equation 9, we can approximate it with a continuous differential function
with the goal of balancing the trade-off mentioned above. There are a number of possible
sign-function approximations, including hyperbolic and arc tangent, and shifted sigmoid
function, the latter of which is the most flexible because of its free parameterβ.3

Specifically, the sigmoid function has the formf(z) = 1
1+e−βz , where the free parameterβ

(an inverse temperature) determines how well the curve will approximate the discontinuous
function. Using the sigmoid function, we can approximate the sign function as sgnz≈

2
1+e−βz − 1. Note that the approximation improves asβ increases. Hence,

αij ≈
1

2(Ni + Nj)

∑
x∈ci

(
1− 2

1 + eβL̂ji(x)

)
−

∑
x∈cj

(
1− 2

1 + eβL̂ij(x)

) . (10)

4 Speech Recognition Evaluation

As in previous work [2], we implemented this technique on NYNEX PHONEBOOK [10,
1], a medium vocabulary isolated-word speech corpus. Gaussian mixture hidden Markov
models (HMMs) produced probability scoreŝP (x|ci) where herex is a matrix of feature
values (one dimension as MFCC features and the other as time frames), andci is a word
identity. The HMMs use four hidden states per phone, and 12 Gaussian mixtures per state
(standard for this task [10]). This yields approximately 200k free model parameters in total.

In our experiments, the steps are: 1) calculateP̂ (x|ci) using full inference (no Viterbi
approximation) for each test case and for each word; 2) classify the test examples using
just the log likelihood ratioŝLij = ln P̂ (x|ci)/P̂ (x|cj); 3) using the hypothesized (and
error-full) class labels, calculate the test-set bias term using one of the techniques described
above; and 4) classify again using the augmented likelihood ratioSij = L̂ij + αij . Since
the procedure is no longer transitive, we run 1000 random tournament-style games (as in
[2]) and choose the most frequent winner as the ultimate winner.

Table 1: Word error rates % on speech data with various sign approximations.
SIZE ORIG SIGN TANH ATAN SIG(.1) SIG(1) SIG(10) SIG(100) SIG(200) SIG(400) KLD[2]
75 2.34 1.76 1.76 1.76 1.82 1.76 1.56 1.57 1.33 1.34 1.91
150 3.31 2.83 2.84 2.83 2.65 2.83 2.65 2.47 2.68 2.43 2.72
300 5.23 4.75 4.75 4.70 4.74 4.75 4.29 3.95 4.34 4.34 4.29
600 7.39 6.64 6.61 6.60 6.66 6.64 6.04 5.70 6.74 6.74 5.91

The results are shown in Table 1, where the first column gives the test-set vocabulary size
(number of different classes). The second column shows the baseline word error rates
(WERs) using onlŷLij . The remaining columns are the bias-corrected results with various
sign approximations, namely sign (Equation 9), hyperbolic and arc tangent, and the shifted
sigmoid with variousβ values (thus allowing us to investigate the trade-off mentioned in
Section 3.1). From the results we can see that larger-βsigmoid is usually better, with
overall performance increasing withβ. This is because with largeβ, the shifted sigmoid
curve better approximates the sign function. Forβ = 100, the results are even better than
our previous KL-divergence (KLD) results reported in [2] (right-most column in the table).
It can also been seen that whenβ is greater than 100, the WERs arenot consistently better.
This indicates that the inaccuracies due to the Taylor error term start adversely affecting
the results at aroundβ = 100.

3Note that the other soft sign functions can also be defined to utilize aβ smoothness parameter.



5 UCI Dataset Evaluation

Table 2: Error rates in % (and std where applicable) on the UCI data.
data NN baseline KLD sign sig(10) NB baseline KLD sign sig(10)

australian 16.75(3.51) 16.33(3.66) 16.17(3.63) 16.32(3.75)14.89(1.97) 14.29(2.45) 14.76(2.45) 14.76(2.37)
breast 2.94(1.16) 2.62(1.15) 2.63(1.15) 2.65(1.15) 2.45(1.93) 2.29(2.02) 2.13(2.07) 1.86(2.07)
chess 0.56 0.46 0.47 0.37 12.66 12.76 13.04 12.85
cleve 25.67(3.40) 24.35(2.82) 24.01(2.27) 24.01(3.94)17.91(2.37) 15.55(1.81) 15.22(1.82) 16.22(2.61)
corral 2.44(1.26) 1.82(1.16) 1.19(1.16) 1.19(1.16) 12.77(3.66) 9.57(2.12) 9.57(2.62) 12.05(4.80)
crx 17.41(3.18) 17.25(2.67) 17.11(2.91) 17.26(3.00)15.05(3.67) 14.02(3.91) 13.06(3.67) 15.05(3.67)

diabetes 28.04(3.08) 26.88(3.56) 27.41(4.13) 27.18(1.98)25.71(2.13) 24.79(2.68) 24.24(3.49) 24.66(2.59)
flare 20.98(2.26) 19.37(2.16) 18.29(2.25) 18.46(1.85)20.24(2.31) 19.55(2.63) 18.70(1.87) 16.64(2.34)

german 29.96(3.49) 28.54(3.45) 28.82(2.53) 28.25(3.71)24.58(2.57) 26.55(1.88) 24.79(2.30) 24.25(2.50)
glass 42.16(2.06) 39.63(1.76) 41.92(1.92) 40.95(2.00)44.12(7.96) 42.24(8.64) 42.06(9.22) 42.28(7.93)
glass2 28.82(2.57) 26.23(2.61) 26.95(2.65) 26.23(2.57)22.36(9.01) 21.15(9.25) 21.77(9.25) 22.36(9.01)
heart 21.83(3.77) 21.48(4.26) 21.19(4.52) 21.09(4.23)15.50(6.01) 15.11(5.34) 15.11(5.72) 15.11(6.01)

hepatitis 19.46(7.10) 16.10(6.13) 17.16(6.92) 15.82(6.94)16.18(5.92) 18.29(5.96) 18.04(5.92) 15.45(4.56)
iris 8.13(1.60) 6.84(1.44) 6.26(1.47) 6.84(1.44) 6.99(1.78) 6.99(1.78) 6.99(1.78) 6.99(1.78)

letter 38.66 34.66 37.10 37.00 30.68 30.88 30.48 30.64
lymphography 24.46(4.86) 23.81(4.57) 23.29(4.52) 23.29(4.86)16.62(8.64) 18.27(9.25) 17.34(8.91) 15.31(8.91)
mofn-3-7-10 0 0 0 0 8.59 4.57 1.56 3.42

pima 25.96(2.01) 25.22(2.95) 24.82(2.87) 25.96(2.19)25.71(2.13) 24.79(2.68) 24.24(3.49) 24.66(2.59)
satimage 15.80 14.25 14.40 14.25 19.15 19.35 19.25 18.70
segment 7.53 7.40 7.27 7.53 12.21 11.73 11.82 12.21

shuttle-small 0.87 0.77 0.87 0.77 1.40 1.41 1.50 1.50
soybean-large 8.47(1.31) 8.29(1.39) 7.18(1.08) 8.47(1.31) 8.71(2.70) 9.13(2.60) 8.35(2.65) 8.37(2.70)

vehicle 28.39(4.68) 28.15(4.62) 27.70(4.44) 28.39(4.75)38.92(4.47) 38.59(5.05) 38.79(4.46) 37.84(4.43)
vote 7.40(2.22) 6.94(1.77) 6.94(1.77) 7.17(2.05) 9.91(1.72) 9.68(2.49) 9.68(1.72) 9.68(1.72)

waveform-21 26.21 26.17 26.12 26.14 21.45 21.11 20.15 21.40

In order to show that our methodology is general beyond isolated-word speech recognition,
we also evaluated this technique on the entire UCI machine learning repository [9]. In
our experiments, baseline classifiers are built using one of: 1) the Matlab neural network
(NN) toolbox with feed-forward 3-layer perceptrons having different number of hidden
units and training epochs (optimized over a large set to achieve the best possible baseline
for each test case), and trained using the Levenberg-Marquardt algorithm [11], or 2) the
MLC++ toolbox to produce näıve Bayes (NB) classifiers that have been smoothed using
Dirichlet priors. In each case (i.e., NN or NB), we augmented the resulting likelihood ratios
with bias correction terms thereby evaluating our technique using quite different forms of
baseline classifiers. Unlike the above, with these data sets we have only tried one random
tournament game to decide the winner so far.

For the NN results, hidden units use logistic sigmoid, and output units use a soft-max
function, making the network outputs interpretable as posterior probabilitiesP (c|x), where
x is the sample andc is the class. While our bias correction described above is in terms
of likelihoods ratiosLij(x), posteriors can be used as well if the posteriors are divided by
the priors giving the relationP (c|x)/P (c) = P (x|c)/p(x) (i.e., scaled likelihoods) which
produces the standardLij(x) values when used in a likelihood ratio .

As was done in [5], for the small data sets the experimental results use 5-fold cross-
validation using randomly selected chunks — results show mean and standard deviation
(std) in parentheses. For the larger data sets, we use the same held out training/test sets
as in [5] (so std is not shown). The experimental procedure is similar to that described in
Section 4, except that scaled likelihoods are used for the NN baselines. Again, first-pass
error-full test-set hypothesized answers are used to compute the bias corrections.

Table 5 shows our results for both the NN (columns 2—5) and NB (columns 6—9) base-
line classifiers. Within each baseline group, the first column shows the baseline accuracy
(with the 5-fold standard derivations when the data set is small). The second column shows
results using KL-divergence based bias corrections — these are the first published KLD
results on the UCI data. The third column shows results with sign-based correction (Equa-
tion 9), and the forth column shows the sigmoid (β= 10) case (Equation 10).

While not the point of this paper, one immediately sees that the NB baseline results are
often better than the NN baseline results (15 out of 25 times). Using the NN as a baseline,



the table shows that the KLD results are almost always better than the baseline 24 times
(out of 25). Also, the sign correction is better than the baseline 23 out of 25 times, and
the sigmoid(10) results are better 20 times. Also (not shown in the table), we found that
β = 10 is slightly better thanβ = 1 but there is no advantage usingβ = 100. These results
therefore show that the NN KLD correction typically beats the sign and sigmoid correction,
possibly owing to the error in the Taylor approximation. Using the NB classifier as the
baseline, however, shows not only improved baseline results in general but also that the
sigmoid(10) improves more often. Specifically, the KLD results are better than the baseline
16 times, sign is better than the baseline 18 times, and sigmoid(10) beats the baseline 19
times, suggesting that sigmoid(10) typically wins over the KLD case.

6 Discussion

We have introduced a new necessary intransitive likelihood ratio classifier. This was done
by using sign-based corrections to likelihood ratios and by using continuous differentiable
approximations of the sign function in order to be able to vary the inherent trade-off be-
tween sign-function approximation accuracy and Taylor error. We have applied these tech-
niques to both a speech recognition corpus and the UCI data sets, as well as applying
previous KL-divergence based corrections to the latter data. Results on the UCI data sets
confirm that our techniques reasonably generalize to data sets other than speech recogni-
tion. This suggests that the framework could be applied to other machine learning tasks.

This work was supported in part by NSF grant IIS-0093430 and IIS-0121396.
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