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Abstract

We present a new method for calculating approximate marginals for
probability distributions defined by graphs with cycles, based on a Gaus-
sian entropy bound combined with a semidefinite outer bound on the
marginal polytope. This combination leads to a log-determinant max-
imization problem that can be solved by efficient interior point meth-
ods [8]. As with the Bethe approximation and its generalizations [12], the
optimizing arguments of this problem can be taken as approximations to
the exact marginals. In contrast to Bethe/Kikuchi approaches, our vari-
ational problem is strictly convex and so has a unique global optimum.
An additional desirable feature is that the value of the optimal solution
is guaranteed to provide an upper bound on the log partition function. In
experimental trials, the performance of the log-determinant relaxation is
comparable to or better than the sum-product algorithm, and by a sub-
stantial margin for certain problem classes. Finally, the zero-temperature
limit of our log-determinant relaxation recovers a class of well-known
semidefinite relaxations for integer programming [e.g., 3].

1 Introduction

Given a probability distribution defined by a graphical model (e.g., Markov random field,
factor graph), a key problem is the computation of marginal distributions. Although highly
efficient algorithms exist for trees, exact solutions are prohibitively complex for more gen-
eral graphs of any substantial size. This difficulty motivates the use of algorithms for
computing approximations to marginal distributions, a problem to which we refer as ap-
proximate inference. One widely-used algorithm is the belief propagation or sum-product
algorithm. As shown by Yedidia et al. [12], it can be interpreted as a method for attempting
to solve a variational problem wherein the exact entropy is replaced by the Bethe approxi-
mation. Moreover, Yedidia et al. proposed extensions to the Bethe approximation based on
clustering operations.

An unattractive feature of the Bethe approach and its extensions is that with certain excep-
tions [e.g., 6], the associated variational problems are typically not convex, thus leading to
algorithmic complications, and also raising the possibility of multiple local optima. Sec-
ondly, in contrast to other variational methods (e.g., mean field [4]), the optimal values of
Bethe-type variational problems fail to provide bounds on the log partition function. This



function arises in various contexts, including approximate parameter estimation and large
deviations exponents, so that such bounds are of interest in their own right.

This paper introduces a new class of variational problems that are both convex and provide
upper bounds. Our derivation relies on a Gaussian upper bound on the discrete entropy of
a suitably regularized random vector, and a semidefinite outer bound on the set of valid
marginal distributions. The combination leads to a log-determinant maximization problem
with a unique optimum that can be found by efficient interior point methods [8]. As with the
Bethe/Kikuchi approximations and sum-product algorithms, the optimizing arguments of
this problem can be taken as approximations to the marginal distributions of the underlying
graphical model. Moreover, taking the “zero-temperature” limit recovers a class of well-
known semidefinite programming relaxations for integer programming problems [e.g., 3].

2 Problem set-up

We consider an undirected graph G = (V,E) with n = |V]| nodes. Associated
with each vertex s € V is a random variable z; taking values in the discrete space
X ={0,1,...,m—1}. We let x = {x, | s € V'} denote a random vector taking values
in the Cartesian product space X™. Our analysis makes use of the following exponen-
tial representation of a graph-structured distribution p(x). For some index set Z, we let
¢ = {¢a | @ € T} denote a collection of potential functions associated with the cliques of
G,and let § = {0, | a € T} be a vector of parameters associated with these potential
functions. The exponential family determined by ¢ is the following collection:

p(X;e) = exp{29a¢a(x)_©(9)} (1a)
0) = log > exp{ ) Oada(x)}. (1b)
xXEX™ «

Here ®(6) is the log partition function that serves to normalize the distribution. In a mini-
mal representation, the functions {¢,,} are affinely independent, and d = |Z| corresponds
to the dimension of the family. For example, one minimal representation of a binary-
valued random vector on a graph with pairwise cliques is the standard Ising model, in
which ¢ = {zs | s € V} U { zsz: | (s,t) € E}. HeretheindexsetZ = VUE,
and d = n + | E|. In order to incorporate higher order interactions, we simply add higher
degree monomials (e.g., xsxx,, for a third order interaction) to the collection of potential
functions. Similar representations exist for discrete processes on alphabets with m > 2
elements.

2.1 Duality and marginal polytopes

It is well known that @ is convex in terms of 6, and strictly so for a minimal representation.
Accordingly, it is natural to consider its conjugate dual function, which is defined by the
relation:

% (p) = sup {(u, ) — 2(0)}. @)
0cRd
Here the vector of dual variables p is the same dimension as exponential parameter 6 (i.e.,
pu € RY). 1t is straightforward to show that the partial derivatives of ® with respect to
6 correspond to cumulants of ¢(x); in particular, the first order derivatives define mean
parameters:

0

0.0 = D p(x;0)¢a(x) = Eglpa(x)]. ®)

xeXxn



In order to compute ®* () for a given 1, we take the derivative with respect to 6 of the
quantity within curly braces in Egn. (2). Setting this derivative to zero and making use of
Eqgn. (3) yields defining conditions for a vector 6() attaining the optimum in Eqgn. (2):

Mo = EO(M) [Pa(x)] Vael (4)

It can be shown [10] that Eqn. (4) has a solution if and only if i belongs to the relative
interior of the set:

MARG(G;¢) = {peR*| Y p(x)¢(x)=p for some p()}  (5)
xeEX™
Note that this set is equivalent to the convex hull of the finite collection of vectors
{p(x) | x € X™}; consequently, the Minkowski-Weyl theorem [7] guarantees that it can
be characterized by a finite number of linear inequality constraints. We refer to this set as
the marginal polytope! associated with the graph G and the potentials ¢.

In order to calculate an explicit form for ®* () for any 1 € MARG(G; ¢), we substitute
the relation in Eqn. (4) into the definition of ®*, thereby obtaining:

(1) = (p, O(w) = ®(O(n) = Y p(x;0(n))logp(x;H(n)). (6)
xXEX™
This relation establishes that for 4 in the relative interior of MARG(G; ¢), the value of the
conjugate dual ®* () is given by the negative entropy of the distribution p(x; 6(u)), where
the pair 6(u) and p are dually coupled via Eqn. (4). For u ¢ cI MARG(G; ¢), it can be
shown [10] that the value of the dual is +co.

Since @ is lower semi-continuous, taking the conjugate twice recovers the original func-
tion [7]; applying this fact to ®* and &, we obtain the following relation:
o) = 0, p) — @* . 7
(0) ueM/r&I%{aé{(G;d))“ ;1) — @ (p)} ™
Moreover, we are guaranteed that the optimum is attained uniquely at the exact marginals
= {pa}+ of p(x; 6). This variational formulation plays a central role in our development
in the sequel.

2.2 Challenges with the variational formulation

There are two difficulties associated with the variational formulation (7). First of all, ob-
serve that the (negative) entropy ®*, as a function of only the mean parameters g, is im-
plicitly defined; indeed, it is typically impossible to specify an explicit form for ®*. Key
exceptions are trees and hypertrees, for which the entropy is well-known to decompose into
a sum of local entropies defined by local marginals on the (hyper)edges [1]. Secondly, for
a general graph with cycles, the marginal polytope MARG(G; ¢) is defined by a number
of inequalities that grows rapidly in graph size [e.g., 2]. Trees and hypertrees again are
important exceptions: in this case, the junction tree theorem [e.g., 1] provides a compact
representation of the associated marginal polytopes.

The Bethe approach (and its generalizations) can be understood as consisting of two steps:
(@) replacing the exact entropy —®* with a tree (or hypertree) approximation; and (b)
replacing the marginal polytope MARG (G} ¢) with constraint sets defined by tree (or hy-
pertree) consistency conditions. However, since the (hyper)tree approximations used do
not bound the exact entropy, the optimal values of Bethe-type variational problems do not
provide a bound on the value of the log partition function ®(6). Requirements for bound-
ing ® are both an outer bound on the marginal polytope, as well as an upper bound on the
entropy —o*.

When ¢, corresponds to an indicator function, then .., is a marginal probability; otherwise, this
choice entails a minor abuse of terminology.



3 Log-determinant relaxation

In this section, we state and prove a set of upper bounds based on the solution of a varia-
tional problem involving determinant maximization and semidefinite constraints. Although
the ideas and methods described here are more generally applicable, for the sake of clarity
in exposition we focus here on the case of a binary vector x € {—1,+1}"™ of “spins”.
It is also convenient to define all problems with respect to the complete graph K, (i.e.,
fully connected). We use the standard (minimal) Ising representation for a binary problem,
in terms of the potential functions ¢ = {z, | s € V} U {zsz¢ | (s,t)}. On the complete
graph, there are d = n + (72‘) such potential functions in total. Of course, any problem can
be embedded into the complete graph by setting to zero a subset of the {6} parameters.
(In particular, for a graph G = (V, E), we simply set 0, = 0 for all pairs (s, t) ¢ E.)

3.1 Outer bounds on the marginal polytope

We first focus on the marginal polytope MARG(K,) = MARG(K,; ¢) of valid dual
variables {1, 15t }, as defined in Eqn. (5). In this section, we describe a set of semidefinite
and linear constraints that any valid dual vector n € MARG(K,,) must satisfy.

3.1.1 Semidefinite constraints

Given an arbitrary vector 1 € R?, consider the following (n + 1) x (n + 1) matrix:

1 1251 125) e Hn—1 Hn
M1 1T pi2 o Hin
po o p21 1 - e Hon
Miul =0 : ®)
Hn—1 . . . . Hn, (n—1)
L fn Bl fn2 0 H(n-1)m ]

The motivation underlying this definition is the following: suppose that the given dual vec-
tor u actually belongs to MARG(K,), in which case there exists some distribution p(x; 6)
such that s = > p(x;0) s and ps = > p(x;0) zezs. Thus, if 4 € MARG(K,),
the matrix M;[u] can be interpreted as the matrix of second order moments for the vector
(1, x), as computed under p(x; 8). (Note in particular that the diagonal elements are all
one, since #2 = 1 when x, € {—1,+1}.) Since any such moment matrix must be positive
semidefinite,? we have established the following:

Lemma 1 (Semidefinite outer bound). The binary marginal polytope MARG(K,,) is
contained within the semidefinite constraint set:

SDEF; := {peR* | My = 0} 9)

This semidefinite relaxation can be further strengthened by including higher order terms in
the moment matrices [5].

3.1.2 Additional linear constraints

It is straightforward to augment these semidefinite constraints with additional linear con-
straints. Here we focus in particular on two classes of constraints, referred to as rooted and
unrooted triangle inequalities by Deza and Laurent [2], that are of especial relevance in the
graphical model setting.

2To be explicit, letting z = (1, x), then for any vector a € R™*!, we have a” M [ula =
a"E[zz"]a = E[||a” z||?], which is certainly non-negative.



Pairwise edge constraints: It is natural to require that the subset of mean parameters
associated with each pair of random variables (x,, x;) — namely, s, p; and ps; — specify
a valid pairwise marginal distribution. Letting {a, b} take values in {—1,+1}2, consider
the set of four linear constraints of the following form:

14+aps+bus+abpus > 0. (10)

It can be shown [11, 10] that these constraints are necessary and sufficient to guarantee the
existence of a consistent pairwise marginal. By the junction tree theorem [1], this pairwise
consistency guarantees that the constraints of Eqn. (10) provide a complete description
of the binary marginal polytope for any tree-structured graph. Moreover, for a general
graph with cycles, they are equivalent to the tree-consistent constraint set used in the Bethe
approach [12] when applied to a binary vector x € {—1,+1}".

Triplet constraints: Local consistency can be extended to triplets {x,,z,x,}, and
even more generally to higher order subsets. For the triplet case, consider the follow-
ing set of constraints (and permutations thereof) among the pairwise mean parameters

{Msta Hsu, ,U/tu}:
Mst + Msu + Mtw Z *17 Mst — Psu — Htu Z *1- (11)

It can be shown [11, 10] that these constraints, in conjunction with the pairwise con-
straints (10), are necessary and sufficient to ensure that the collection of mean parameters
{ sy oty Py fsts tsus fitw } UNIQUely determine a valid marginal over the triplet (zg, z, z,).
Once again, by applying the junction tree theorem [1], we conclude that the constraints (10)
and (11) provide a complete characterization of the binary marginal polytope for hypertrees
of width two. It is worthwhile observing that this set of constraints is equivalent to those
that are implicitly enforced by any Kikuchi approximation [12] with clusters of size three
(when applied to a binary problem).

3.2 Gaussian entropy bound

We now turn to the task of upper bounding the entropy. Our starting point is the familiar
interpretation of the Gaussian as the maximum entropy distribution subject to covariance
constraints:

Lemma 2. The (differential) entropy h(X) := — [ p(X)log p(X)dX is upper bounded by
the entropy 1 log det cov(x) + % log(27re) of a Gaussian with matched covariance.

Of interest to us is the discrete entropy of a discrete-valued random vector x € {—1, +1}",
whereas the Gaussian bound of Lemma 2 applies to the differential entropy of a continuous-
valued random vector. Therefore, we need to convert our discrete vector to the continuous
space. In order to do so, we define a new continuous random vector viax = %x -+ u, where
u is a random vector independent of x, with each element independently and identically
distributed® as u, ~ U[—3 5 2} The motivation for rescaling x by is to pack the boxes
together as tightly as possible.

Lemma 3. We have h(X) = H(x), where i and H denote the differential and discrete
entropies of x and x respectively.

Proof. By construction, the differential entropy can be decomposed as a sum of integrals
over hyperboxes of unit volume, one for each configuration, over which the probability
density of X is constant. O

3The notation 2/[a, b] denotes the uniform distribution on the interval [a, b].



3.3 Log-determinant relaxation

Equipped with these building blocks, we are now ready to state and prove a log-determinant
relaxation for the log partition function.

Theorem 1. Let x € {—1,+1}", and let OUT(K,,) be any convex outer bound on
MARG(K,) that is contained within SDEF;. Then there holds

1 1 . n e
d(0) < ueOmU%)({K,L){w’ )+ 5 log det [ My (1) + 3 blkdiag|0, I,,]] } t3 log( 5 )
(12)
where blkdiag]0, I,,] isan (n+1) x (n+ 1) block-diagonal matrix. Moreover, the optimum
is attained at a unique iz € OUT(K,).

Proof. For any 1 € MARG(K,), let x be a random vector with these mean parameters.
Consider the continuous-valued random vector x = %x -+ u. From Lemma 3, we have
H (x) = h(x); combining this equality with Lemma 2, we obtain the upper bound H (x) <
3 log det cov(X) + % log(2me). Since x and u are independent and u ~ /[—1/2,1/2], we
can write cov(X) = 1 cov(x) + 15I,. Next we use the Schur complement formula [8] to
express the log determinant as follows:

~ 1 1
logdetcov(x) = logdet {M[u] + 3 blkdiag|0, I, } 4+ nlog 1 (13)

Combining Eqn. (13) with the Gaussian upper bound leads to the following expression:

1 1
H(x) = —9*(u) < 3 log det (M [u] + 3 blkdiag|0, I,,]) + g log(%)
Substituting this upper bound into the variational representation of Eqn. (7) and using the
fact that OUT(K,,) is an outer bound on MARG(G) yields Egn. (12). By construction,

the cost function is strictly convex so that the optimum is unique. O

The inclusion OUT(K,,) C SDEF; in the statement of Theorem 1 guarantees that the
matrix M (u) will always be positive semidefinite. Importantly, the optimization prob-
lem in Eqgn. (12) is a determinant maximization problem, for which efficient interior point
methods have been developed [e.g., 8].

4 Experimental results

The relevance of the log-determinant relaxation for applications is two-fold: it provides
upper bounds on the log partition function, and the maximizing arguments z € OUT(K,,)
of Egn. (12) can be taken as approximations to the exact marginals of the distribution
p(x;0). So as to test its performance in computing approximate marginals, we per-
formed extensive experiments on the complete graph (fully connected) and the 2-D nearest-
neighbor lattice model. We treated relatively small problems with 16 nodes so as to en-
able comparison to the exact answer. For any given trial, we specified the distribution
p(x;6) by randomly choosing 6 as follows. The single node parameters were chosen
as 0, ~ U[-0.25,0.25] independently* for each node. For a given coupling strength
deoup > 0, We investigated three possible types of coupling: (a) for repulsive interac-
tions, s, ~ U[—2dcoup, 0]; (b) for mixed interactions, s, ~ U[—dcoup, +dcoup]; () foOr
attractive interactions, 65, ~ [0, 2dcoup).

For each distribution p(x;6), we performed the following computations: (a) the exact
marginal probability p(xzs = 1;6) at each node; and (b) approximate marginals computed

“Here U[a, b] denotes the uniform distribution on [a, b].



from the Bethe approximation with the sum-product algorithm, or (c) log-determinant
approximate marginals from Theorem 1 using the outer bound OUT(K,,) given by the
first semidefinite relaxation SDEF; in conjunction with the pairwise linear constraints in
Eqgn. (10). We computed the exact marginal values either by exhaustive summation (com-
plete graph), or by the junction tree algorithm (lattices). We used the standard parallel
message-passing form of the sum-product algorithm with a damping factor® v = 0.05.
The log-determinant problem of Theorem 1 was solved using interior point methods [8].
For each graph (fully connected or grid), we examined a total of 6 conditions: 2 different
potential strengths (weak or strong) for each of the 3 types of coupling (attractive, mixed,
and repulsive). We computed the ¢1-error L 3" | |p(z, = 1;6) — [is|, where i, was the
approximate marginal computed either by SP or by LD.

Problem type Method

Sum-product Log-determinant

Graph Coupling‘ Strength Median‘ Range Median‘ Range

R (0.25,0.25) | 0.035 | [0.01,0.10] | 0.020 | [0.01,0.03]
R (0.25,0.50) | 0.066 | [0.03,0.20] | 0.017 | [0.01,0.04]
Full M* (0.25,0.25) | 0.003 | [0.00,0.04] | 0.019 | [0.01,0.03]
M (0.25,0.50) | 0.035 | [0.01,0.31] | 0.010 | [0.01,0.06]
A (0.25,0.06) | 0.021 | [0.00,0.08] | 0.026 | [0.01,0.06]
A (0.25,0.12) | 0.422 | [0.08,0.86] | 0.023 | [0.01,0.09]
R (0.25,1.0) | 0.285 | [0.04,0.59] | 0.041 | [0.01,0.12]
R (0.25,2.0) | 0.342 | [0.04,0.78] | 0.033 | [0.00,0.12]
Grid M* (0.25,1.0) | 0.008 | [0.00,0.20] | 0.016 | [0.01,0.02]
M (0.25,2.0) | 0.053 | [0.01,0.54] | 0.032 | [0.01,0.11]
A (0.25,1.0) | 0.404 | [0.06,0.90] | 0.037 | [0.01,0.13]
A (0.25,2.0) | 0.550 | [0.06,0.94] | 0.031 | [0.00,0.12]

Table 1. Statistics of the ¢;-approximation error for the sum-product (SP) and log-
determinant (LD) methods for the fully connected graph K¢, as well as the 4-nearest neigh-
bor grid with 16 nodes, with varying coupling and potential strengths.

Table 1 shows quantitative results for 100 trials performed in each of the 12 experimental
conditions, including only those trials for which SP converged. The potential strength is
given as the pair (dobs, deoup); NOte that donLs = 0.25 in all trials. For each method, we show
the sample median, and the range [min, max] of the errors. Overall, the performance of
LD is better than that of SP , and often substantially so. The performance of SP is slightly
better in the regime of weak coupling and relatively strong observations (6, values); see the
entries marked with * in the table. In the remaining cases, the LD method outperforms SP,
and with a large margin for many examples with strong coupling. The two methods also
differ substantially in the ranges of the approximation error. The SP method exhibits some
instability, with the error for certain problems being larger than 0.5; for the same problems,
the LD error ranges are much smaller, with a worst case maximum error over all trials and
conditions of 0.13. In addition, the behavior of SP can change dramatically between the
weakly coupled and strongly coupled conditions, whereas the LD results remain stable.

>More precisely, we updated messages in the log domain as v log M2 + (1 — ~) log M.



5 Discussion

In this paper, we developed a new method for approximate inference based on the combina-
tion of a Gaussian entropy bound with semidefinite constraints on the marginal polytope.
The resultant log-determinant maximization problem can be solved by efficient interior
point methods [8]. In experimental trials, the log-determinant method was either com-
parable or better than the sum-product algorithm, and by a substantial margin for certain
problem classes. Of particular interest is that, in contrast to the sum-product algorithm,
the performance degrades gracefully as the interaction strength is increased. It can be
shown [11, 10] that in the zero-temperature limit, the log-determinant relaxation (12) re-
duces to a class of semidefinite relaxations that are widely used in combinatorial opti-
mization. One open question is whether techniques for bounding the performance of such
semidefinite relaxations [e.g., 3] can be adapted to the finite temperature case.

Although this paper focused exclusively on the binary problem, the methods described here
can be extended to other classes of random variables. It remains to develop a deeper un-
derstanding of the interaction between the two components to these approximations (i.e.,
the entropy bound, and the outer bound on the marginal polytope), as well as how to tai-
lor approximations to particular graph structures. Finally, semidefinite constraints can be
combined with entropy approximations (preferably convex) other than the Gaussian bound
used in this paper, among them “convexified” Bethe/Kikuchi entropy approximations [9].
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