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Abstract

The purpose of this paper is to investigate infinity-sample properties of
risk minimization based multi-category classification methods. These
methods can be considered as natural extensions to binary large margin
classification. We establish conditions that guarantee the infinity-sample
consistency of classifiers obtained in the risk minimization framework.
Examples are provided for two specific forms of the general formulation,
which extend a number of known methods. Using these examples, we
show that some risk minimization formulations can also be used to ob-
tain conditional probability estimates for the underlying problem. Such
conditional probability information will be useful for statistical inferenc-
ing tasks beyond classification.

1 Motivation

Consider a binary classification problem where we want to predict labely ∈ {±1} based
on observationx. One of the most significant achievements for binary classification in
machine learning is the invention of large margin methods, which include support vector
machines and boosting algorithms. Based on a set of observations(X1, Y1), . . . , (Xn, Yn),
a large margin classification algorithm produces a decision functionf̂n by empirically min-
imizing a loss function that is often a convex upper bound of the binary classification error
function. Givenf̂n, the binary decision rule is to predicty = 1 if f̂n(x) ≥ 0, and to predict
y = −1 otherwise (the decision rule at̂fn(x) = 0 is not important). In the literature, the
following form of large margin binary classification is often encountered: we minimize the
empirical risk associated with a convex functionφ in a pre-chosen function classCn:

f̂n = arg min
f∈Cn

1
n

n∑
i=1

φ(f(Xi)Yi). (1)

Originally such a scheme was regarded as a compromise to avoid computational difficulties
associated with direct classification error minimization, which often leads to an NP-hard
problem. The current view in the statistical literature interprets such methods as algorithms
to obtain conditional probability estimates. For example, see [3, 6, 9, 11] for some related
studies. This point of view allows people to show the consistency of various large margin



methods: that is, in the large sample limit, the obtained classifiers achieve the optimal
Bayeserror rate. For example, see [1, 4, 7, 8, 10, 11]. The consistency of a learning
method is certainly a very desirable property, and one may argue that a good classification
method should be consistent in the large sample limit.

Although statistical properties of binary classification algorithms based on the risk min-
imization formulation (1) are quite well-understood due to many recent works such as
those mentioned above, there are much fewer studies on risk minimization based multi-
category problems which generalizes the binary large margin method (1). The complexity
of possible generalizations may be one reason. Another reason may be that one can al-
ways estimate the conditional probability for a multi-category problem using the binary
classification formulation (1) for each category, and then pick the category with the high-
est estimated conditional probability (or score).1 However, it is still useful to understand
whether there are more natural alternatives, and what kind of risk minimization formulation
which generalizes (1) can be used to yield consistent classifiers in the large sample limit.
An important step toward this direction has recently been taken in [5], where the authors
proposed a multi-category extension of the support vector machine that is Bayes consistent
(note that there were a number of earlier proposals that were not consistent). The purpose
of this paper is to generalize their investigation so as to include a much wider class of risk
minimization formulations that can lead to consistent classifiers in the infinity-sample limit.
We shall see that there is a rich structure in risk minimization based multi-category classi-
fication formulations. Multi-category large margin methods have started to draw more at-
tention recently. For example, in [2], learning bounds for some multi-category convex risk
minimization methods were obtained, although the authors did not study possible choices
of Bayes consistent formulations.

2 Multi-category classification

We consider the followingK-class classification problem: we would like to predict the
label y ∈ {1, . . . ,K} of an input vectorx. In this paper, we only consider the simplest
scenario with0 − 1 classification loss: we have a loss of 0 for correct prediction, and loss
of 1 for incorrect prediction.

In binary classification, the class label can be determined using the sign of a decision func-
tion. This can be generalized toK class classification problem as follows: we considerK
decision functionsfc(x) wherec = 1, . . . ,K and we predict the labely of x as:

T (f(x)) = arg max
c∈{1,...,K}

fc(x), (2)

where we denote byf(x) the vector functionf(x) = [f1(x), . . . , fK(x)].

Note that if two or more components off achieve the same maximum value, then we
may choose any of them asT (f). In this framework,fc(x) is often regarded as a scoring
function for categoryc that is correlated with how likelyx belongs to categoryc (compared
with the remainingk − 1 categories). The classification error is given by:

`(f) = 1− EXP (Y = T (X)|X).

Note that only the relative strength offc compared with the alternatives is important. In
particular, the decision rule given in (2) does not change when we add the same numerical
quantity to each component off(x). This allows us to impose one constraint on the vector
f(x) which decreases the degree of freedomK of theK-component vectorf(x) to K− 1.

1This approach is often called one-versus-all or ranking in machine learning. Another main ap-
proach is to encode a multi-category classification problem into binary classification sub-problems.
The consistency of such encoding schemes can be difficult to analyze, and we shall not discuss them.



For example, in the binary classification case, we can enforcef1(x)+f2(x) = 0, and hence
f(x) can be represented as[f1(x),−f1(x)]. The decision rule in (2), which compares
f1(x) ≥ f2(x), is equivalent tof1(x) ≥ 0. This leads to the binary classification rule
mentioned in the introduction.

In the multi-category case, one may also interpret the possible constraint on the vector
functionf , which reduces its degree of freedom fromK to K − 1 based on the following
reasoning. In many cases, we seekfc(x) as a function ofp(Y = c|x). Since we have a
constraint

∑K
c=1 p(Y = c|x) = 1 (implying that the degree of freedom forp(Y = c|x) is

K − 1), the degree of freedom forf is alsoK − 1 (instead ofK). However, we shall point
out that in the algorithms we formulate below, we may either enforce such a constraint
that reduces the degree of freedom off , or we do not impose any constraint, which keeps
the degree of freedom off to be K. The advantage of the latter is that it allows the
computation of eachfc to be decoupled. It is thus much simpler both conceptually and
numerically. Moreover, it directly handles multiple-label problems where we may assign
eachx to multiple labels ofy ∈ {1, . . . ,K}. In this scenario, we do not have a constraint.

In this paper, we consider an empirical risk minimization method to solve a multi-category
problem, which is of the following general form:

f̂n = arg min
f∈Cn

1
n

n∑
i=1

ΨYi
(f(Xi)). (3)

As we shall see later, this method is a natural generalization of the binary classification
method (1). Note that one may consider an even more general form withΨY (f(X)) re-
placed byΨY (f(X), X), which we don’t study in this paper.

From the standard learning theory, one can expect that with appropriately chosenCn, the
solutionf̂n of (3) approximately minimizes the true riskR(f̂) with respect to the unknown
underlying distribution within the function classCn,

R(f) = EX,Y ΨY (f(X)) = EXL(P (·|X), f(X)), (4)

whereP (·|X) = [P (Y = 1|X), . . . , P (Y = K|X)] is the conditional probability, and

L(q, f) =
K∑

c=1

qcΨc(f). (5)

In order to understand the large sample behavior of the algorithm based on solving (3), we
first need to understand the behavior of a functionf that approximately minimizesR(f).
We introduce the following definition (also referred to as classification calibrated in [1]):

Definition 2.1 ConsiderΨc(f) in (4). We say that the formulation is admissible (clas-
sification calibrated) on a closed setΩ ⊆ [−∞,∞]K if the following conditions hold:
∀c, Ψc(·) : Ω → (−∞,∞] is bounded below and continuous;∩c{f : Ψc(f) < ∞} is
non-empty and dense inΩ; ∀q, if L(q, f∗) = inff L(q, f), thenf∗c = supk f∗k implies
qc = supk qk.

Since we allowΨc(f) = ∞, we use the convention thatqcΨc(f) = 0 whenqc = 0 and
Ψc(f) = ∞. The following result relates the approximate minimization of theΨ risk to
the approximate minimization of classification error:

Theorem 2.1 Let B be the set of all Borel measurable functions. For a closed setΩ ⊂
[−∞,∞]K , let BΩ = {f ∈ B : ∀x, f(x) ∈ Ω}. If Ψc(·) is admissible onΩ, then for a
Borel measurable distribution,R(f) → infg∈BΩ R(g) implies`(f) → infg∈B `(g).



Proof Sketch. First we show that the admissibility implies that∀ε > 0, ∃δ > 0 such that∀q
andx:

inf
qc≤supk qk−ε

{L(q, f) : fc = sup
k

fk} ≥ inf
g∈Ω

L(q, g) + δ. (6)

If (6) does not hold, then∃ε > 0, and a sequence of(cm, fm, qm) with fm ∈ Ω such that
fm

cm = supk fm
k , qm

cm ≤ supk qm
k − ε, andL(qm, fm) − infg∈Ω L(qm, g) → 0. Taking a

limit point of (cm, fm, qm), and using the continuity ofΨc(·), we obtain a contradiction
(technical details handling the infinity case are skipped). Therefore (6) must be valid.

Now we consider a vector functionf(x) ∈ ΩB. Let q(x) = P (·|x). GivenX, if P (Y =
T (f(X))|X) ≥ P (Y = T (q(X))|X)+ε, then equation (6) implies thatL(q(X), f(X)) ≥
infg∈Ω L(q(X), g) + δ. Therefore

`(f)− inf
g∈B

`(g) =EX [P (Y = T (q(X))|X)− P (Y = T (f(X))|X)]

≤ε + EXI(P (Y = T (q(X))|X)− P (Y = T (f(X))|X) > ε)

≤ε + EX
LX(q(X), f(X))− infg∈BΩ LX(q(X), g)

δ

=ε +
R(f)− infg∈BΩ R(g)

δ
.

In the above derivation we useI to denote the indicator function. Sinceε andδ are arbitrary,
we obtain the theorem by lettingε → 0. 2

Clearly, based on the above theorem, an admissible risk minimization formulation is suit-
able for multi-category classification problems. The classifier obtained from minimiz-
ing (3) can approach the Bayes error rate if we can show that with appropriately chosen
function classCn, approximate minimization of (3) implies approximate minimization
of (4). Learning bounds of this forms have been very well-studied in statistics and ma-
chine learning. For example, for large margin binary classification, such bounds can be
found in [4, 7, 8, 10, 11, 1], where they were used to prove the consistency of various
large margin methods. In order to achieve consistency, it is also necessary to take a se-
quence of function classesCn (C1 ⊂ C2 ⊂ · · · ) such that∪nCn is dense in the set of
Borel measurable functions. The setCn has the effect of regularization, which ensures that

R(f̂n) ≈ inff∈Cn
R(f). It follows that asn → ∞, R(f̂n) P→ inff∈B R(f). Theorem 2.1

then implies that̀(f̂n) P→ inff∈B `(f).

The purpose of this paper is not to study similar learning bounds that relate approximate
minimization of (3) to the approximate minimization of (4). See [2] for a recent investi-
gation. We shall focus on the choices ofΨ that lead to admissible formulations. We pay
special attention to the case that eachΨc(f) is a convex function off , so that the resulting
formulation becomes computational more tractable. Instead of working with the general
form of Ψc in (4), we focus on two specific choices listed in the next two sections.

3 Unconstrained formulations

We consider unconstrained formulation with the following choice ofΨ:

Ψc(f) = φ(fc) + s

(
K∑

k=1

t(fk)

)
, (7)

whereφ, s andt are appropriately chosen functions that are continuously differentiable.

The first term, which has a relatively simple form, depends on the labelc. The second
term is independent of the label, and can be regarded as a normalization term. Note that



this function is symmetric with respect to components off . This choice treats all potential
classes equally. It is also possible to treat different classes differently (e.g. replacingφ(fc)
by φc(fc)), which can be useful if we associate different classification loss to different
kinds of errors.

3.1 Optimality equation and probability model

Using (7), the conditional true risk (5) can be written as:

L(q, f) =
K∑

c=1

qcφ(fc) + s

(
K∑

c=1

t(fc)

)
.

In the following, we study the property of the optimal vectorf∗ that minimizesL(q, f)
for a fixedq. Givenq, the optimal solutionf∗ of L(q, f) satisfies the following first order
condition:

qcφ
′(f∗c ) + µf∗t′(f∗c ) = 0 (c = 1, . . . ,K). (8)

where quantityµf∗ = s′(
∑K

k=1 t(f∗k )) is independent ofk.

Clearly this equation relatesqc to f∗c for each componentc. The relationship ofq andf∗

defined by (8) can be regarded as the (infinite sample-size) probability model associated
with the learning method (3) withΨ given by (7).

The following result presents a simple criterion to check admissibility. We skip the proof
for simplicity. Most of our examples satisfy the condition.

Proposition 3.1 Consider (7). AssumeΦc(f) is continuous on[−∞,∞]K and bounded
below. Ifs′(u) ≥ 0 and∀p > 0, pφ′(f) + t′(f) = 0 has a unique solutionfp that is an
increasing function ofp, then the formulation is admissible.

If s(u) = u, the condition∀p > 0 in Proposition 3.1 can be replaced by∀p ∈ (0, 1).

3.2 Decoupled formulations

We lets(u) = u in (7). The optimality condition (8) becomes

qcφ
′(f∗c ) + t′(f∗c ) = 0 (c = 1, . . . ,K). (9)

This means that we haveK decoupled equalities, one for eachfc. This is the simplest and
in the author’s opinion, the most interesting formulation. Since the estimation problem in
(3) is also decoupled intoK separate equations, one for each component off̂n, this class
of methods are computationally relatively simple and easy to parallelize. Although this
method seems to be preferable for multi-category problems, it is not the most efficient way
for two-class problem (if we want to treat the two classes in a symmetric manner) since we
have to solve two separate equations. We only need to deal with one equation in (1) due
to the fact that an effective constraintf1 + f2 = 0 can be used to reduce the number of
equations. This variable elimination has little impact if there are many categories.

In the following, we list some examples of multi-category risk minimization formulations.
They all satisfy the admissibility condition in Proposition 3.1. We focus on the relationship
of the optimal optimizer functionf∗(q) and the conditional probabilityq. For simplicity,
we focus on the choiceφ(u) = −u.

3.2.1 φ(u) = −u and t(u) = eu

We obtain the following probability model:qc = ef∗
c . This formulation is closely related

to the maximum-likelihood estimate with conditional modelqc = efc/
∑K

k=1 efk (logistic



regression). In particular, if we choose a function class such that the normalization condi-
tion

∑K
k=1 efk = 1 holds, then the two formulations are identical. However, they become

different when we do not impose such a normalization condition.

Another very important and closely related formulation is the choice ofφ(u) = − lnu
and t(u) = u. This is an extension of maximum-likelihood estimate with probability
modelqc = fc. The resulting method is identical to maximum-likelihood if we choose
our function class such that

∑
k fk = 1. However, the formulation also allows us to use

function classes that do not satisfy the normalization constraint
∑

k fk = 1. Therefore this
method is more flexible.

3.2.2 φ(u) = −u and t(u) = ln(1 + eu)

This version uses binary logistic regression loss, and we have the following probability
model:qc = (1 + e−f∗

c )−1. Again this is an unnormalized model.

3.2.3 φ(u) = −u and t(u) = 1
p |u|

p (p > 1)

We obtain the following probability model:qc = sign(f∗c )|f∗c |p−1. This means that at the
solution,f∗c ≥ 0. One may modify it such that we allowf∗c ≤ 0 to model the condition
probabilityqc = 0.

3.2.4 φ(u) = −u and t(u) = 1
p max(u, 0)p (p > 1)

In this probability model, we have the following relationship:qc = max(f∗c , 0)p−1. The
equation implies that we allowf∗c ≤ 0 to model the conditional probabilityqc = 0. There-
fore, with a fixed function class, this model is more powerful than the previous one. How-
ever, at the optimal solution,f∗c ≤ 1. This requirement can be further alleviated with the
following modification.

3.2.5 φ(u) = −u and t(u) = 1
p min(max(u, 0)p, p(u− 1) + 1) (p > 1)

In this probability model, we have the following relationship at the exact solution:qc =
min(max(fc

∗ , 0), 1)p−1. Clearly this model is more powerful than the previous model since
the function valuef∗c ≥ 1 can be used to modelqc = 1.

3.3 Coupled formulations

In the coupled formulation withs(u) 6= u, the probability model can be normalized in a
certain way. We list a few examples.

3.3.1 φ(u) = −u, and t(u) = eu, and s(u) = ln(u)

This is the standard logistic regression model. The probability model is:

qc(x) = exp(f∗c (x))(
K∑

c=1

exp(f∗c (x)))−1.

The right hand side is always normalized (sum up to 1). Note that the model is not contin-
uous at infinities, and thus not admissible in our definition. However, we may consider the
regionΩ = {f : supk fk = 0}, and it is easy to check that this model is admissible inΩ.
Let fΩ

c = fc − supk fk ∈ Ω, thenfΩ has the same decision rule asf andR(f) = R(fΩ).
Therefore Theorem 2.1 implies thatR(f) → infg∈B R(g) implies`(f) → infg∈B `(g).



3.3.2 φ(u) = −u, and t(u) = |u|p′ , and s(u) = 1
p |u|

p/p′ (p, p′ > 1)

The probability model is:

qc(x) = (
K∑

k=1

|f∗k (x)|p
′
)(p−p′)/p′sign(f∗c (x))|f∗c (x)|p

′−1.

We may replacet(u) by t(u) = max(0, u)p, and the probability model becomes:

qc(x) = (
K∑

k=1

max(f∗k (x), 0)p′)(p−p′)/p′ max(f∗c (x), 0)p′−1.

These formulations do not seem to have advantages over the decoupled counterparts. Note
that if we letp → 1, then the sum of thep′

p′−1 -th power of the right hand side→ 1. In a
way, this means that the model is normalized in the limit ofp → 1.

4 Constrained formulations

As pointed out, one may impose constraints on possible choices off . We may impose
such a condition when we specify the function classCn. However, for clarity, we shall
directly impose a condition into our formulation. If we impose a constraint into (7), then
its effect is rather similar to that of the second term in (7). In this section, we consider
a direct extension of binary large-margin method (1) to multi-category case. The choice
given below is motivated by [5], where an extension of SVM was proposed. We use a risk
formulation that is different from (7), and for simplicity, we will consider linear equality
constraint only:

Ψc(f) =
K∑

k=1,k 6=c

φ(−fk), s.t. f ∈ Ω, (10)

where we defineΩ as:

Ω = {f :
K∑

k=1

fk = 0} ∪ {f : sup
k

fk = ∞}.

We may interpret the added constraint as a restriction on the function classCn in (3) such
that everyf ∈ Cn satisfies the constraint. Note that withK = 2, this leads to the usually
binary large margin method. Using (10), the conditional true risk (5) can be written as:

L(q, f) =
K∑

c=1

(1− qc)φ(−fc), s.t.f ∈ Ω. (11)

The following result provides a simple way to check the admissibility of (10).

Proposition 4.1 If φ is a convex function which is bounded below andφ′(0) < 0, then (10)
is admissible onΩ.

Proof Sketch. The continuity condition is straight-forward to verify. We may also assume
thatφ(·) ≥ 0 without loss of generality. Now letf achieves the minimum ofL(q, ·). If
fc = ∞, then it is clear thatqc = 1 and thusqk = 0 for k 6= c. This implies that
for k 6= c, φ(−fk) = inff φ(−f), and thusfk < 0. If fc = supk fk < ∞, then the
constraint impliesfc ≥ 0. It is easy to see that∀k, qc ≥ qk since otherwise, we must have
φ(−fk) > φ(−fc), and thusφ′(−fk) > 0 andφ′(−fc) < 0, implying that with sufficient
smallδ > 0, φ(−(fk + δ)) < φ(−fk) andφ(−(fc − δ)) < φ(−fc). A contradiction.2



Using the above criterion, we can convert any admissible convexφ for the binary formula-
tion (1) into an admissible multi-category classification formulation (10).

In [5] the special case of SVM (with loss functionφ(u) = max(0, 1−u)) was studied. The
authors demonstrated the admissibility by direct calculation, although no results similar to
Theorem 2.1 were established. Such a result is needed to prove consistency. The treatment
presented here generalizes their study. Note that for the constrained formulation, it is more
difficult to relatefc at the optimal solution to a probability model, since such a model will
have a much more complicated form compared with the unconstrained counterpart.

5 Conclusion

In this paper we proposed a family of risk minimization methods for multi-category classi-
fication problems, which are natural extensions of binary large margin classification meth-
ods. We established admissibility conditions that ensure the consistency of the obtained
classifiers in the large sample limit. Two specific forms of risk minimization were pro-
posed and examples were given to study the induced probability models. As an implication
of this work, we see that it is possible to obtain consistent (conditional) density estimation
using various non-maximum likelihood estimation methods. One advantage of some of the
newly proposed methods is that they allow us to model zero density directly. Note that for
the maximum-likelihood method, near zero density may cause serious robustness problems
at least in theory.
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