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Abstract

Face detection is a canonical example of a rare event detection prob-
lem, in which target patterns occur with much lower frequency than non-
targets. Out of millions of face-sized windows in an input image, for ex-
ample, only a few will typically contain a face. Viola and Jones recently
proposed a cascade architecture for face detection which successfully ad-
dresses the rare event nature of the task. A central part of their method
is a feature selection algorithm based on AdaBoost. We present a novel
cascade learning algorithm based on forward feature selection which is
two orders of magnitude faster than the Viola-Jones approach and yields
classifiers of equivalent quality. This faster method could be used for
more demanding classification tasks, such as on-line learning.

1 Introduction

Fast and robust face detection is an important computer vision problem with applications
to surveillance, multimedia processing, and HCI. Face detection is often formulated as a
search and classification problem: a search strategy generates potential image regions and a
classifier determines whether or not they contain a face. A standard approach is brute-force
search, in which the image is scanned in raster order and every. window of pixels

over multiple image scales is classified [1, 2, 3].

When a brute-force search strategy is used, face detectioais avent detectioproblem,

in the sense that among the millions of image regions, only very few contain faces. The
resulting classifier design problem is very challenging: The detection rate must be very high
in order to avoid missing any rare events. At the same time, the false positive rate must be
very low (e.g. 107%) in order to dodge the flood of non-events. From the computational
standpoint, huge speed-ups are possible if the sparsity of faces in the input set can be
exploited. In their seminal work [4], Viola and Jones proposed a face detection method
based on a cascade of classifiers, illustrated in figure 1. Each classifier node is designed to
reject a portion of the nonface regions and pass all of the faces. Most image regions are
rejected quickly, resulting in very fast face detection performance.

There are three elements in the Viola-Jones framework: the cascade architecture, a rich
over-complete set of rectangle features, and an algorithm based on AdaBoost for construct-
ing ensembles of rectangle features in each classifier node. Much of the recent work on face
detection following Viola-Jones has explored alternative boosting algorithms such as Float-
Boost [5], GentleBoost [6], and Asymmetric AdaBoost [7] (see [8] for a related method).
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Figurel: lllustration of the cascade architecture witimodes.

This paper is motivated by the observation that the AdaBoost feature selection method is
anindirectway to meet the learning goals of the cascade. Itis also an expensive algorithm.
For example, weeks of computation are required to produce the final cascade in [4].

In this paper we present a new cascade learning algorithm which uses direct forward feature
selection to construct the ensemble classifiers in each node of the cascade. We demonstrate
empirically that our algorithm is two orders of magnitude faster than the Viola-Jones algo-
rithm, and produces cascades which are indistinguishable in face detection performance.
This faster method could be used for more demanding classification tasks, such as on-line
learning or searching the space of classifier structures. Our results also suggest that a large
portion of the effectiveness of the Viola-Jones detector should be attributed to the cascade
design and the choice of the feature set.

2 Cascade Architecture for Rare Event Detection

The learning goal for the cascade in figure 1 is the construction of a set of classifiers
{H;}!_,. EachHj, is required to have a very high detection rate, but ontpaderate

false positive rate (e.g. 50%). An input image region is passed figro H; ; if it is
classified as a face, otherwise itis rejected. If{fig} can be constructed to produicele-
pendenterrors, then the overall detection rat@nd false positive ratg for the cascade is
given by[T""_, d; and[].", f; respectively. In a hypothetical example, a 20 node cascade
with d; = 0.999 and f; = 0.5 would haved = 0.98 andf = 9.6e — 7.

As in [4], the overall cascade learning method in this paper is a stage-wise, greedy feature
selection process. Nodes are constructed sequentially, startingfwitiithin a nodeH;,

features are added sequentially to form an ensemble. Following Viola-Jones, the training
dataset is manipulated between nodes to encourage independent errors. Eafh isode
trained on all of the positive examples and a subset of the negative examples. In moving
from nodeH; to H;,; during training, negative examples that were classified successfully

by the cascade are discarded and replaced with new ones, using the standard bootstrapping
approach from [1]. The difference between our method and Viola-Jones is the feature
selection algorithm for the individual nodes.

The cascade architecture in figure 1 should be suitable for other rare event problems, such
as network intrusion detection in which an attack constitutes a few packets out of tens of
millions. Recent work in that community has also explored a cascade approach [9].

For each node in the cascade architecture, given a trainifg:set; }, the learning objec-
tive is to select a set of weak classifidiis,} from a total set ofF’ features and combine
them into an ensemblH with a high detection raté and a moderate false positive rgte
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Figure2: Diagram for training one node in the cascade architecture, (a) is for the Viola-
Jones method, and (b) is for the proposed methedcand D are false positive rate and
detection rate goals respectively.

A weak classifier is formed from a rectangle feature by applying the feature to the input
pattern and thresholding the restlffraining a weak classifier corresponds to setting its
threshold.

In [4], an algorithm based on AdaBoost trains weak classifiers, adds them to the ensemble,
and computes the ensemble weights. AdaBoost [10] is an iterative method for obtaining
an ensemble of weak classifiers by evolving a distribution of weightsover the training
data. In the Viola-Jones approach, each iteratiohboosting adds the classifigf with
the lowest weighted error to the ensemble. Afferounds of boosting, the decision of the

T
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AdaBoost ensemble weights afdis the threshold of the ensemble. This threshold is
adjusted to meet the detection rate goal. More features are then added if necessary to meet
the false positive rate goal. The flowchart for the algorithm is given in figure 2(a).

ensemble is defined d&(z) = , where they,; are the standard

The process of sequentially adding features which individually minimize the weighted error
is at best an indirect way to meet the learning goals for the ensemble. For example, the false
positive goal is relatively easy to meet, compared to the detection rate goal which is near
100%. As a consequence, the threshldroduced by AdaBoost must be discarded in
favor of a threshold computed directly from the ensemble performance. Unfortunately,
the weight distribution maintained by AdaBoost requires that the complete set of weak
classifiers be retrained in each iteration. This is a computationally demanding task which
is in the inner loop of the feature selection algorithm.

Beyond these concerns is a more basic question about the cascade learning prditdem:

is the role of boosting in forming an effective ensemifle® hypothesis is that the overall
success of the method depends upon having a sufficiently rich feature set, which defines the
space of possible weak classifiers. From this perspective, a failure mode of the algorithm
would be the inability to find sufficient features to meet the learning goal. The question
then is to what extent boosting helps to avoid this problem. In the following section we
describe a simple, direct feature selection algorithm that sheds some light on these issues.

3 Direct Feature Selection Method

We propose a new cascade learning algorithm based on forward feature selection [11].
Pseudo-code of the algorithm for building an ensemble classifier for a single node is given

A feature and its corresponding classifier will be used interchangeably.



1. Given a training set. Gived, the minimum detection rate an the maximum
false positive rate.

2. For every featurej, train a weak classifigt;, whose false positive rate j5
3. Initialize the ensemble H to an empty set, i2«— ¢. t — 0, dy = 0.0, fo = 1.0.
4. whiled, < dorf, > f

(a) if d; < d, then, find the featuré, such that by adding it td, the new
ensemble will have largest detection rdte; .

(b) else, find the featurk, such that by adding it téf, the new ensemble will
have smallest false positive rafg, ;.

) t—t+1,H— HU{h}.

5. The decision of the ensemble classifier is formed by a majority voting of weak

(x) >
classifiers inf, i.e. H(z) = { (1) O%hfgliéji(szj(x) =2 , wheref = Z. De-

creasd if necessary.

Table 1: The direct feature selection method for building an ensemble classifier.

in table 1. The corresponding flowchart is illustrated in figure 2(b). The first step in our
algorithm is to train each of the weak classifiers to meet the false positive rate goal for the
ensemble.

The output of each weak classifier on each training data item is collected in a large look-
up table. The core algorithm is an exhaustive search over possible classifiers. In each
iteration, we consider adding each possible classifier to the ensemble and select the one
which makes the largest improvement to the ensemble performance. The selection criteria
directly maximizes the learning objective for the node. The look-up table, in conjunction
with majority vote rule, makes this feature search extremely fast.

The resulting algorithm is roughly 100 times faster than Viola-Jones. The key difference
is that we train the weak classifiers only once per node, while in the Viola-Jones method
they are trained once for each feature in the cascadeT lbet the training time for weak
classifierd and F' be the number of features in the final cascade. The learning time for
Viola-Jones is roughly'T', which in [4] was on the order of weeks. Lat be the number

of nodes in the cascade. Empirically the learning time for our meth®d/i8, which is on

the order of hours in our experiments. For the cascade of 32 nodes with 4297 features in
[4], the difference in learning time will be dramatic.

The difficulty of the classifier design problem increases with the depth of the cascade, as
the non-face patterns selected by bootstrapping become more challenging. A large num-
ber of features may be required to achieve the learning objectives when majority vote is
used. In this case, a weighted ensemble could be advantageous. Once feature selection has
been performed, a variant of the Viola-Jones algorithm can be used to obtain a weighted
ensemble. Pseudo-code for this weight setting method is given in table 2.

4 Experimental Results

We conducted three controlled experiments to compare our feature selection method to
the Viola-Jones algorithm. The procedures and data sets were the same for all of the ex-

2In our experiments]’ is about 10 minutes.



Given a training set, maintain a distributiéhover it.
SelectN features using the algorithm in table 1. These features form &.set
Initialize the ensemble classifier to an empty set,ile— (.
fori=1:N
(a) Select the featurgé from F' that has smallest errar on the training set,
weighted over the distributio.
(b) Update the distributio® according to the AdaBoost algorithm as in [4].
(c) Add the featuré: and it's associated weight;, = —log < to H. And
remove the featurg from F.

5. Decision of the ensemble classifier is formed by a weighted average of weak clas-
sifiers inH. Decrease the threshdldintil the ensemble reaches the detection rate
goal.

A wbdpR

Table 2: Weight setting algorithm after feature selection.

periments. Our training set contained 5000 example face images and 5000 initial non-face
examples, all of size 24x24. We used approximately 2284 million non-face patches to boot-
strap the non-face examples between nodes. We used 32466 features sampled uniformly
from the entire set of rectangle features. For testing purposes we used the MIT+CMU
frontal face test set [2] in all experiments. Although many researchers use automatic pro-
cedures to evaluate their algorithm, we decided to manually count the missed faces and
false positives. When scanning a test image at different scales, the image is re-scaled
repeatedly by a factor of 1.25. Post-processing is similar to [4].

In the first experiment we constructed three face detection cascades. One cascade used
the direct feature selection method from table 1. The second cascade used the weight set-
ting algorithm in table 2. The training algorithms stopped when they exhausted the set of
non-face training examples. The third cascade used our implementation of the Viola-Jones
algorithm. The three cascades had 38, 37, and 28 nodes respectively. The third cascade was
stopped after 28 nodes because the AdaBoost based training algorithm could not meet the
learning goal. With 200 features, when the detection rate is 99.9%, the AdaBoost ensem-
ble’s false positive rate is larger than 97%. Adding several hundred additional features did
not change the outcome. ROC curves for cascades using our method and the Viola-Jones
method are depicted in figure 3(a). We constructed the ROC curves by removing nodes
from the cascade to generate points with increasing detection and false positive rates. These
curves demonstrate that the test performance of our method is indistinguishable from that
of the Viola-Jones method.

The second experiment explored the ability of the rectangle feature set to meet the detection
rate goal for the ensemble on a difficult node. Figure 3(b) shows the false positive and
detection rates for the ensemble (i.e., one node in the cascade architecture) as a function
of the number of features that were added to the ensemble. The training set used was the
bootstrapped training set for the 19th node in the cascade which was trained by the Viola-
Jones method. Even for this difficult learning task, the algorithm can improve the detection
rate from about 0.7 to 0.9 using only 13 features, without any significant increase in false
positive rate. This suggests that the rectangle feature set is sufficiently rich. Our hypothesis
is that the strength of this feature set in the context of the cascade architecture is the key to

3We found that the criterion for automatically finding detection errors in [6] was too loose. This
criterion yielded higher detection rates and lower false positive rates than manual counting.
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Figure3: Experimental Results. (a) is ROC curves of the proposed method and the Viola-
Jones method and (b) is trend of detection and false positive rates when more features are
combined in one node.

the success of the Viola-Jones approach.

We conducted a third experiment in which we focused on learning one node in the cascade
architecture. Figure 4 shows ROC curves of the Viola-Jones, direct feature selection, and
weight setting methods for one node of the cascade. The training set used in figure 4 was
the same training set as in the second experiment. Unlike the ROC curves in figure 3(a),
these curves show the performance of the node in isolation using a validation set. These
curves reinforce the similarity in the performance of our method compared to Viola-Jones.
In the region of interest (e.g. detection rat®9%), our algorithms yield better ROC curve
performance than the Viola-Jones method. Although figure 4 and figure 3(b) only showed
curves for one specific training set, the same pattern in these figures were found with other
bootstrapped training sets in our experiments.

5 Related Work

A survey of face detection methods can be found in [12]. We restrict our attention here
to frontal face detection algorithms related to the cascade idea. The neural network-based
detector of Rowley et. al. [2] incorporated a manually-designed two node cascade. Other
cascade structures have been constructed for SVM classifiers. In [13], a set of reduced set
vectors is calculated from the support vectors. Each reduced set vector can be interpreted as
a face or anti-face template. Since these reduced set vectors are appjightiallyto the

input pattern, they can be viewed as nodes in a cascade. An alternative cascade framework
for SVM classifiers is proposed by Heisele et. al. in [14]. Based on different assumptions,
Keren et al. proposed another object detection method which consists of a series of anti-
face templates [15]. Carmichael and Hebert propose a hierarchical strategy for detecting
chairs at different orientations and scales [16].

Following [4], several authors have developed alternative boosting algorithms for feature
selection. Li et al. incorporated floating search into the AdaBoost algorithm (FloatBoost)
and proposed some new features for detecting multi-view faces [5]. Lienhart et al. [6] ex-
perimentally evaluated different boosting algorithms and different weak classifiers. Their
results showed that Gentle AdaBoost and CART decision trees had the best performance.
In an extension of their original work [7], Viola and Jones proposed an asymmetric Ad-
aBoost algorithm in which false negatives are penalized more than false positives. This is
an interesting attempt to incorporate the rare event observation more explicitly into their
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Figure4: Single node ROC curves on a validation set.

learning algorithm (see [8] for a related method). All of these methods explore variations
in AdaBoost-based feature selection, and their training times are similar to the original
Viola-Jones algorithm. While all of the above methods adopt a brute-force search strategy
for generating input regions, there has been some interesting work on generating candidate
face hypotheses from more general interest operators. Two examples are [17, 18].

6 Conclusions

Face detection is a canonical example of a rare event detection task, in which target patterns
occur with much lower frequency than non-targets. It results in a challenging classifier
design problem: The detection rate must be very high in order to avoid missing any rare
events and the false positive rate must be very low to dodge the flood of non-events. A
cascade classifier architecture is well-suited to rare event detection.

The Viola-Jones face detection framework consists of a cascade architecture, a rich over-
complete feature set, and a learning algorithm based on AdaBoost. We have demonstrated
that a simpler direct algorithm based on forward feature selection can produce cascades
of similar quality with two orders of magnitude less computation. Our algorithm directly
optimizes the learning criteria for the ensemble, while the AdaBoost-based method is more
indirect. This is because the learning goal is a highly-skewed tradeoff between detection
rate and false positive rate which does not fit naturally into the weighted error framework
of AdaBoost. Our experiments suggest that the feature set and cascade structure in the
Viola-Jones framework are the key elements in the success of the method.

Three issues that we plan to explore in future work are: the necessary properties for fea-
ture sets, global feature selection methods, and the incorporation of search into the cas-
cade framework. The rectangle feature set seems particularly well-suited for face detec-
tion. What general properties must a feature set possess to be successful in the cascade
framework? In other rare event detection tasks where a large set of diverse features is not
naturally available, methods to create such a feature set may be useful (e.g. the random
subspace method proposed by Ho [19]).

In our current algorithm, both nodes and features are added sequentially and greedily to
the cascade. More global techniques for forming ensembles could yield better results.



Finally, the current detection method relies on a brute-force search strategy for generating
candidate regions. We plan to explore the cascade architecture in conjunction with more
general interest operators, such as those defined in [18, 20].

The authors are grateful to Mike Jones and Paul Viola for providing their training data,
along with many valuable discussions. This work was supported by NSF grant 11S-0133779
and the Mitsubishi Electric Research Laboratory.
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