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Abstract

Approximate linear programming (ALP) has emerged recently as one of
the most promising methods for solving complex factored MDPs with
finite state spaces. In this work we show that ALP solutions are not
limited only to MDPs with finite state spaces, but that they can also be
applied successfully to factored continuous-state MDPs (CMDPs). We
show how one can build an ALP-based approximation for such a model
and contrast it to existing solution methods. We argue that this approach
offers a robust alternative for solving high dimensional continuous-state
space problems. The point is supported by experiments on three CMDP
problems with 24-25 continuous state factors.

1 Introduction

Markov decision processes (MDPs) offer an elegant mathematical framework for represent-
ing and solving decision problems in the presence of uncertainty. While standard solution
techniques, such as value and policy iteration, scale-up well in terms of the number of
states, the state space of more realistic MDP problems is factorized and thus becomes ex-
ponential in the number of state components. Much of the recent work in the AI community
has focused on factored structured representations of finite-state MDPs and their efficient
solutions. Approximate linear programming (ALP) has emerged recently as one of the
most promising methods for solving complex factored MDPs with discrete state compo-
nents. The approach uses a linear combination of local feature functions to model the value
function. The coefficients of the model are fit using linear program methods. A number of
refinements of the ALP approach have been developed over past few years. These include
the work by Guestrin et al [8], de Farias and Van Roy [6, 5], Schuurmans and Patrascu
[15], and others [11]. In this work we show how the same set of linear programming (LP)
methods can be extended also to solutions of factored continuous-state MDPs.1

The optimal solution of the continuous-state MDP (CMDP) may not (and typically does
not) have a finite support. To address this problem, CMDPs and their solutions are usually
approximated and solved either through state space discretization or by fitting a surrogate
and (often much simpler) parametric value function model. The two methods come with
different advantages and limitations. 2 The disadvantage of discretizations is their accu-

1We assume that action spaces stay finite. Rust [14] calls such models discrete decision processes.
2The two methods are described in more depth in Section 3.



racy and the fact that higher accuracy solutions are paid for by the exponential increase in
the complexity of discretizations. On the other hand, parametric value-function approx-
imations may become unstable when combined with the dynamic programming methods
and least squares error [1]. The ALP solution that is developed in this work eliminates the
disadvantages of discretization and function approximation approaches while preserving
their good properties. It extends the approach of Trick and Zin [17] to factored multi-
dimensional continuous state spaces. Its main benefits are good running time performance,
stability of the solution, and good quality policies.

Factored models offer a more natural and compact way of parameterizing complex decision
processes. However, not all CMDP models and related factorizations are equally suitable
also for the purpose of optimization. In this work we study factored CMDPs with state
spaces restricted to �������
	�� . We show that the solution for such a model can be approximated
by an ALP with infinite number of constraints that decompose locally. In addition, we
show that by choosing transition models based on beta densities (or their mixtures) and
basis functions defined by products of polynomials one obtains an ALP in which both the
objective function and constraints are in closed form. In order to alleviate the problem of
infinite number of constraints, we develop and study approximation based on constraint
sampling [5, 6]. We show that even under a relatively simple random constraint sampling
we are able to very quickly calculate solutions of a high quality that are comparable to other
existing CMDP solution methods.

The text of the paper is organized as follows. First we review finite-state MDPs and approx-
imate linear programming (ALP) methods developed for their factored refinements. Next
we show how to extend the LP approximations to factored continuous-state MDPs and dis-
cuss assumptions underlying the model. Finally, we test the new method on a continuous-
state version of the computer network problem [8, 15] and compare its performance to
alternative CMDP methods.

2 Finite-state MDPs

A finite state MDP defines a stochastic control process with components 
����
����������� ,
where � is a finite set of states, � is a finite set of actions, ����������� �"!#� �$�%�&	
defines a probabilistic transition model mapping a state to the next states given an action,
and �'�(�)�*�+! IR defines a reward model for choosing an action in a specific state.

Given an MDP our objective is to find the policy ,.-/�0�1!2� maximizing the infinite-
horizon discounted reward criterion: 34
65879�:<;>= 96? 9 � , where =A@ ���$�%�B� is a discount factor
and
? 9 is a reward obtained in step C . The value of the optimal policy satisfies the Bellman

fixed point equation [12]:D 
�E>�GFIH*JLKM N �O
�EP�RQS�UT =WV�XLY �4
�EUZ\[ EP�RQS� D 
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where
D

is the value of the optimal policy and E Z denotes the next state. For all statesE @ � the equation can be written as
D F8` D , where ` is the Bellman operator. Given

the value function
D

, the optimal policy , - 
�E>� is defined by the action optimizing Eqn 1.

Methods for solving an MDP include value iteration, policy iteration, and linear program-
ming [12, 2]. In the linear program (LP) formulation we solve the following problem:

minimize V X D 
�E>� (2)

subject to:
D 
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where values of
D 
�E>� for every state E are treated as variables.



Factorizations and LP approximations

In factored MDPs, the state space � is defined in terms of state variables� �*iB�R�4jB�BklkBk
�R� � � . As a result, the state space becomes exponential in the number of
variables. Compact parameterizations of MDPs based on dynamic belief networks [7] and
decomposable reward functions are routinely used to represent such MDPs more efficiently.
However, the presence of a compact model does not imply the existence of efficient optimal
solutions. To address this problem Koller and Parr [9] and Guestrin at al [8] propose to use
a linear model [13]: m 
�E>��F V 9+n 9 m 9 
�E 9 �
to approximate the value function

D 
�E>� . Here n 9 are the linear coefficients to be found (fit)
and
m 9 s denote feature functions defined over subsets E 9 of state variables.

Given a factored binary-state MDP, the coefficients of the linear model can be found by
solving the surrogate of the LP in Equation 2 [8]:

minimize o V<prq p�sBt�uUv w�xyv V w�x{z p�|�}~p_� (3)

subject to: V p q p��� z p |�} p ����� V w Y x�� |�}~�p6� } p]� �(�6� � z p |�}<�p ���� ����|�} �y� ��� � ��� } �\�
where E 9�� M are the parents of state variables in E Z9 under action Q , and �O
�EP�RQS� decom-

poses to 5��� : i � M � � 
�E M � � �RQS� , such that � M � � 
�E M � � �
Q$� is a local reward function defined
over a subset of state variables. Note that while the objective function can be computed
efficiently, the number of constraints one has to satisfy remains exponential in the number
of random variables. However, only a subset of these constraints becomes active and affect
the solution. Guestrin et al [8] showed how to find active constraints by solving a cost
network problem. Unfortunately, the cost network formulation is NP-hard. An alternative
approach for finding active constraints was devised by Schuurmans and Patrascu [15]. The
approach implements a constraint generation method [17] and appears to give a very good
performance on average. The idea is to greedily search for maximally violated constraints
which can be done efficiently by solving a linear optimization problem. These constraints
are included in the linear program and the process is repeated until no violated constraints
are found. De Farias and Van Roy [5] analyzed a Monte Carlo approach with randomly
sampled constraints.

3 Factored continuous-state MDPs

Many stochastic controlled processes are more naturally defined using continuous state
variables. In this work we focus on continuous-state MDPs (CMDPs) where state spaces
are restricted to ���$�%�&	�� . 3 We assume factored representations where transition probabil-
ities are defined in terms of densities over �������
	 state variable subspaces: �>
�E Z [ EP�
QS��F� ��l: i �.
 � Z� [ EP�
QS� where E Z and E denote the current and previous states. Rewards are rep-
resented compactly over subsets of state variables, similarly to factored finite-state MDPs.

3.1 Solving continuous-state MDP

The optimal value function for a continuous-state MDP satisfies the Bellman fixed point
equation: D 
�E>��F�H�J(KM¢¡ �O
�EP�
QS�UT =¤£ XLY �.
�E Z [ EP�
QS� D 
�E Z �b¥�E Z§¦ k

3We note that in general any bounded subspace of IR
t

can be transformed to ¨ � �R©«ª t .



The problem with CMDPs is that in most cases the optimal value function does not have a
finite support and cannot be computed. The solutions attempt to replace the value function
or the optimal policy with a finite approximation.

Grid-based MDP (GMDP) discretizations. A typical solution is to discretize the state
space to a set of grid points and approximate value functions over such points. Unfortu-
nately, classic grid algorithms scale up exponentially with the number of state variables
[4]. Let ¬­F � E i �
E j �lkBkBkR�
EU®�� be a set of grid points over the state space �������
	 � . Then
the Bellman operator ` can be approximated with an operator `/¯ that is restricted to grid
points ¬ . One such operator has been studied by Rust [14] and is defined as:D ¯�
�E 9 ��FIH*JLKM �� �O
�E 9 �
Q$�<T = ®V�l: i �0¯�
�E � [ E 9 �
QS� D ¯�
�E � � �� � (4)

where � ¯ 
�E � [ E 9 �
QS�°F'± M 
�E 9 ���>
�E � [ E 9 �RQS� defines a normalized transition probability such
that ± M 
�E 9 � is a normalizing constant. Equation 4 applied to grid points ¬ defines a fi-
nite state MDP with [ ¬*[ states. The solution,

D ¯hF²`�¯ D ¯ , approximates the original
continuous-state MDP. Convergence properties of the approximation scheme in Equation 4
for random or pseudo-random samples were analyzed by Rust [14].

Parametric function approximations. An alternative way to solve a continuous-state
MDP is to approximate the optimal value function

D 
�E>� with an appropriate parametric
function model [3]. The parameters of the model are fitted iteratively by applying one
step Bellman backups to a finite set of state points arranged on a fixed grid or obtained
through Monte Carlo sampling. Least squares criterion is used to fit the parameters of the
model. In addition to parallel updates and optimizations, on-line update schemes based on
gradient descent [3, 16] are very popular and can be used to optimize the parameters. The
disadvantage of the methods is their instability and possible divergence [1].

3.2 LP approximations of CMDPs

Our objective is to develop an alternative to the above solutions that is based on ALP
techniques and that takes advantage of model factorizations. It is easy to see that for a
general continuous-state model the exact solution cannot be formulated as a linear program
as was done in Equation 2 since the number of states is infinite. However, using linear
representations of the value functions we need to optimize only over a finite number of
weights combining feature functions. So adopting the ALP approach from factored MDPs
(Section 2), the CMDP problem can be formulated as:

minimize o V p q p £ w³x z p |�} p �_´�} p
subject to: V pfq p��� z p_|�}~p��U��� £ w Y x�µ¶I·¸ Y¹»º w Y x_¼ |�½ �¾ � } ¾ � � �6� �_¿À z py|�} �p �_´�} �p �� ����|�} �\� ��� � �4� } �«�
The above formulation of the ALP builds upon our observation that linear models in com-
bination with factored transitions are well-behaved when integrated over �������
	6� state space
(or any bounded space) and nicely decompose along state-variable subsets defining feature
functions similarly to Equation 3. This simplification is a consequence of the following
variable elimination transformation:£ i;ÂÁ £SÃ m 
_ÄL�6¥SÄ³Å�¥SÆ�F ¡ Á £�Ã m 
_ÄL�b¥$Ä³ÅÇÆ%¦ i; F £�Ã m 
 Ä(�6¥SÄ�k
Despite the decomposition, the ALP formulation of the factored CMDP comes with two
concerns. First, the integrals may be improper and not computable. Second, we need to



satisfy infinite number of constraints (for all values of E and Q ). In the following we give
solutions to both issues.

Closed form solutions Integrals in the objective function and constraints depend on the
choice of transition models and basis functions. We want all these integrals to be proper
Riemannian integrals. We prefer integrals with closed-form expressions. To this point, we
have identified conjugate classes of transition models and basis functions leading to closed
form expressions.

Beta transitions. To parameterize the transition model over ���$�%�&	 we propose to use beta
densities or their mixtures. The beta transition is defined as:�.
 �ÈZ� [ E �
� M �
QS��FrÉ�Ê»Ë\QU
 �ÈZ� [ Ì i�
� M 
�E �
� M �
�«Ì j�
� M 
�E �R� M �«�
�
where E �
� M is the parent set of a variable � � under action Q , and Ì i�
� M 
�E �R� M �&�\Ì j�
� M 
�E �
� M �ÎÍ+�
for E �R� M @ �������
	6Ï X ¹_Ð Ñ Ï define the parameters of the beta model.

Feature functions. A feature function form that is particularly suitable for the ALP and
matches beta transitions is a product of power functions:m 9 
�E 9 ��F ·Ò ¹
Ó X x � � ¹ Ð x� k
It is easy to show that for such a case the integrals in the objective function simplify to:£ X x m 9 
�E 9 �6¥�E 9 F £ X x ·Ò ¹»Ó X x � � ¹_Ð x� ¥ÔE 9 F ·Ò ¹
Ó X x £ Ò ¹ � � ¹_Ð x� ¥S� � F ·Ò ¹
Ó X x �Õ �
� 9 T8� k
Similarly, using our conjugate transition and basis models the integrals in constraints sim-
plify to:£ w Y x µ¶ ·¸ Y¹»º w Y x ¼ |�½ �¾ � } ¾ � ���6� �_¿À z p |�} �p �_´�} �p~Ö ·¸ Y¹
º w Y xS×

|]Ø³Ù¾ � � |�} ¾ � � �~Ú�Ø%Û¾ � � |�} ¾ � � �6� × |]Ø³Ù¾ � � |�} ¾ � � �6�SÚÝÜ ¾ � p �× |]Ø Ù¾ � � |�} ¾ � � �SÚ/Ø Û¾ � � |�} ¾ � � �<Ú�Ü ¾ � p � × |]Ø Ù¾ � � |�} ¾ � � �6�
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where Þ�
bkß� is the gamma function. For example, assuming features with products of state
variables:

m 9 
�E 9 �PF � Ò ¹�Ó X x � � , the ALP formulation becomes:

minimize o V prq p�à ©sSá v w�x6v (5)

subject to: V p q p��� ·¸ ¹ º w�x ½ ¾ ��� ·¸ Y¹ º w Y x
Ø Ù¾ � � |�} ¾ � � �Ø Ù¾ � � |�} ¾ � ���SÚ/Ø Û¾ � � |�} ¾ � �B� �� ����|�} �«� �P� � ��� } �\�

ALP solution. Although the ALP uses infinitely many constraints, only a finite subset of
constraints, active constraints, is necessary to define the optimal solution. Existing ALP
methods for factored finite-state MDPs search for this subset more efficiently by taking
advantage of local constraint decompositions and various heuristics. However, at the end
these methods always rely on the fact the decompositions are defined on a finite state sub-
space. Unfortunately, constraints in our model decompose over smaller but still continuous
subspaces, so the existing solutions for the finite-state MDPs cannot be applied directly.

Sampling constraints. To avoid the problem of continuous state spaces we approximate
the ALP solution using a finite set of constraints defined by a finite set of state space points
and actions in � . These state space points can be defined by regular grids on state sub-
spaces or via random sampling of states E @Ýâ . In this work we focus on and experiment
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Figure 1: a. Topologies of computer networks used in experiments. b. Transition densities
for the ã th computer and different previous-state/action combinations.

with the random sampling approach. For the finite state spaces such a technique has been
devised and analyzed by de Farias and Van Roy [5]. We note that the blind sampling ap-
proach can be improved via various heuristics.4 However, despite many possible heuristic
improvements, we believe that the crucial benefit comes from the ALP formulation that
“fits” the linear model and subsequent constraint and subspace decompositions.

4 Experiments
To test the ALP method we use a continuous-state modification of the computer network
example proposed by Guestrin et al [8]. Figure 1a illustrates three different network struc-
tures used in experiments. Nodes in graphs represent computers. The state of a machine
is represented by a number between 0 and 1 reflecting its processing capacity (the abil-
ity to process tasks). The network performance can be controlled through activities of a
human operator: the operator can attend a machine (one at time) or do nothing. Thus,
there is a total of ä�Tå� actions where ä is the number of computers in the network. The
processing capacity of a machine fluctuates randomly and is determined by: (1) a ran-
dom event (e.g., a software bug), (2) machines connected to it and (3) the presence of
the operator at the machine console. The transition model represents the dynamics of
the computer network. The model is factorized and defined in terms of beta densities:�>
_� Z� [ E �
� M �RQS�OFæÉ�Ê»Ë\QU
 � Z� [ Ì i�R� M 
�E �
� M �
�«Ì j�R� M 
�E �
� M �\� , where � Z� is the current state of the ã th
computer, and E �R� M describes the previous-step state of the computers affecting ã . We use:Ì i�Lç: M � M 
�E �
� M �0F8è<T��léL� � a{ê(� � � ��ë i and Ì j�Lç: M � M 
�E �R� M ��Få�l��a{èL� � a{ìL� � � �³ë i for transitions
when the human does not attend the computer, and Ì i�l: M � M 
�E �R� M ��F8èL� and Ì j�l: M � M 
�E �R� M �PF8è
when the operator is present at the computer. Figure 1b illustrates transition densities for
the ã th computer given different values of its parents

� � � ��� �³ë i
� and actions. The goal is to
maintain the processing ability of the network at the highest possible level over time. The
preferences are expressed in the reward function: �O
�EP�RQS��F'è(� j i T 5 ��l: j � j� , where � i is
the server. The discount factor = is ��k§í(ê .
To define the ALP approximation, we used a linear combination of linear (for every node)
and quadratic (for every link) feature functions. To demonstrate the practical benefit of
the approach we have compared it to the grid-based approximation (Equation 4) and least-
square value iteration approach (with the same linear value function model as in the ALP).
The constraints in the ALP were sampled randomly. To make the comparison fair the same
sets of samples were shared by all three methods. The full comparison study was run on

4Various constraint sampling heuristics are analyzed and reported in a separate work [10].
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Figure 2: (a) Average values of control policies for ALP, least-squares (LS), and grid
(GMDP) approaches for different sample sizes. Random policy is used as a baseline. (b)
Average running times.

problems with three network structures from Figure 1a, each with 24 or 25 nodes. Figure
2a illustrates the average quality (value) of a policy obtained by different approximation
methods while varying the number of samples. The average is computed over 30 solutions
obtained for 30 different sample sets and 100 different (random) start states. The simulation
trajectories of length 50 are used. Figure 2b illustrates the scale-up potential of the methods
in terms of running times. Results are averaged over 30 solutions.
Overall, the results of experiments clearly demonstrate the benefit of the ALP with “lo-
cal” feature functions. For the sample size range tested, our ALP method came close to
the least-squares (LS) approach in terms of the quality. Both used the same value func-
tion model and both managed to fit well the parameters, hence we got comparable quality
results. However, the ALP was much better in terms of running time. Oscillations and
poor convergence behavior of the iterative LS method is responsible for the difference. The
ALP outperformed the grid-based approach (GMDP) in both the policy quality and running
times. The gap in the policy quality was more pronounced for smaller sample sizes. This
can be explained by the ability of the model to “cover” complete state space as opposed to
individual grid points. Better running times for the ALP can be explained by the fact that
the number of free variables to be optimized is fixed (they are equal to weights î ), while
in grid methods free variables correspond to grid samples and their number grows linearly.

5 Conclusions
We have extended the application of linear program approximation methods and their ben-
efits to factored MDPs with continuous states. 5 We have proposed a factored transition
model based on beta densities and identified feature functions that match well such a model.
Our ALP solution offers numerous advantages over standard grid and function approxima-
tion approaches: (1) it takes advantage of the structure of the process; (2) it allows one to
define non-linear value function models and avoids the instabilities associated with least-
squared approximations; (3) it gives a more robust solution for small sample sizes when

5We note that our CMDP solution paves the road to ALP solutions for factored hybrid state MDPs.



compared to grid methods and provides a better way of “smoothing” value function to un-
seen examples; (4) its running time scales up better than grid methods. These has been
demonstrated experimentally on three large problems.

Many interesting issues related to the new method remain to be addressed. First, the random
sampling of constraints can be improved using various heuristics. We report results of
some heuristic solutions in a separate work [10]. Second, we did not give any complexity
bounds for the random constraint sampling approach. However, we expect that the proofs
by de Farias and Van Roy [5] can be adapted to cover the CMDP case. Finally, our ALP
method assumes a bounded subspace of IR � . The important open question is how to extend
the ALP method to IR � spaces.
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