
A Biologically Plausible Algorithm
for Reinforcement-shaped
Representational Learning

Maneesh Sahani
W.M. Keck Foundation Center for Integrative Neuroscience

University of California, San Francisco, CA 94143-0732
maneesh@phy.ucsf.edu

Abstract

Significant plasticity in sensory cortical representations can be driven in
mature animals either by behavioural tasks that pair sensory stimuli with
reinforcement, or by electrophysiological experiments that pair sensory
input with direct stimulation of neuromodulatory nuclei, but usually not
by sensory stimuli presented alone. Biologically motivated theories of
representational learning, however, have tended to focus on unsupervised
mechanisms, which may play a significant role on evolutionary or devel-
opmental timescales, but which neglect this essential role of reinforce-
ment in adult plasticity. By contrast, theoretical reinforcement learning
has generally dealt with the acquisition of optimal policies for action in
an uncertain world, rather than with the concurrent shaping of sensory
representations. This paper develops a framework for representational
learning which builds on the relative success of unsupervised generative-
modelling accounts of cortical encodings to incorporate the effects of
reinforcement in a biologically plausible way.

1 Introduction

A remarkable feature of the brain is its ability to adapt to, and learn from, experience.
This learning has measurable physiological correlates in terms of changes in the stimulus-
response properties of individual neurons in the sensory systems of the brain (as well as in
many other areas). While passive exposure to sensory stimuli can have profound effects on
the developing sensory cortex, significant plasticity in mature animals tends to be observed
only in situations where sensory stimuli are associated with either behavioural or electrical
reinforcement. Considerable theoretical attention has been paid to unsupervised learning of
representations adapted to natural sensory statistics, and to the learning of optimal policies
of action for decision processes; however, relatively little work (particularly of a biological
bent) has sought to understand the impact of reinforcement tasks on representation.

To be complete, understanding of sensory plasticity must come at two different levels. At
a mechanistic level, it is important to understand how synapses are modified, and how
synaptic modifications can lead to observed changes in the response properties of cells.
Numerous experiments and models have addressed these questions ofhowsensory plastic-



ity occurs. However, a mechanistic description alone neglects the information-processing
aspectsof the brain’s function. Measured changes in sensory representation must underlie
an adaptive change in neural information processing. If we can understand the processing
goals of sensory systems, and therefore understand how changes in representation advance
these goals in the face of changing experience, we will have shed light on the question of
whysensory plasticity occurs. This is the goal of the current work.

To approach this goal, we first construct a representational model and associated objec-
tive function which together isolate the question of how the reinforcement-related value
of a stimulus is learned (the classic problem of reinforcement learning) from the ques-
tion of how this value impacts the sensory representation. We show that the objective
function can be optimised by an expectation-maximisation learning procedure, but suggest
that direct optimisation is not biologically plausible, relying as it does on the availability
of an exact posterior distribution over the cortical representation given both stimulus and
reinforcement-value. We therefore develop and validate (through simulation) an alternative
optimisation approach based on the statistical technique of importance sampling.

2 Model

The standard algorithms of reinforcement learning (RL) deal with an agent that receives
rewards or penalties as it interacts with a world of known structure and, generally Marko-
vian, dynamics [1]. The agent passes through a series of “states”, choosing in each one
an action which results (perhaps stochastically) in a payoff and in a transition to another
state. Associated with each state (or state-action pair) and a given policy of action is a
value, which represents the expected payoff that would be received if the policy were to
be followed starting from that initial state (and initial action). Much work in RL has fo-
cused on learning the value function. Often the state that the agent occupies at each point
in time is assumed to be directly observable. In other cases, the agent receives only partial
information about the state it occupies, although in almost all studies the basic structure
of the world is assumed to be known. In these partially observable models, then, the state
information (which might be thought of as a form of sensory input) is used to estimate
which one of a known group of states is currently occupied, and so a natural representation
emerges in terms of a belief-distribution over states.

In the general case, however, the state structure of the world, if indeed a division into dis-
crete states makes sense at all, is unknown. Instead, the agent must simultaneously discover
a representation of the sensory inputs suitable for predicting the reinforcement value, and
learn the action-contingent value function itself. This general problem is quite difficult. In
probabilistic terms, solving it exactly would require coping with a complicated joint distri-
bution over representational structures and value functions. However, using an analogy to
the variational inference methods of unsupervised learning [2], we might modularise our
approach by factoring this joint into independent distributions over the sensory representa-
tion on the one hand and the value function on the other. In this framework approximate
estimation might proceed iteratively, using the current value function to tune the sensory
representation, and then reëstimating the value function for the revised sensory encoding.

The present work, being concerned with the way in which reinforcement guides sensory
representational learning, focuses exclusively on the first of these two steps. Thus, we take
the value associated with the current sensory input to be given. This value might repre-
sent a current estimate generated in the course of the iterative procedure described above.
In many of the reinforcement schedules used in physiological experiments, however, the
value is easily determined. For example, in a classical conditioning paradigm the value is
independent of action, and is given by the sum of the current reinforcement and the dis-
counted average reinforcement received. Our problem, then, is to develop a biologically
plausible algorithm which is able to find a representation of the sensory input which facili-



tates prediction of the value.

Although our eventual goal clearly fits well in the framework of RL, we find it useful to
start from a standard theoretical account ofunsupervisedrepresentational learning. The
view we adopt fits well with a Helmholtzian account of perceptual processing, in which the
sensory cortex interprets the activities of receptors so as to infer the state of the external
world that must have given rise to the observed pattern of activation. Perception, by this
account, may be thought of as a form of probabilistic inference in agenerative model. The
general structure of such a model involves a set oflatent variablesor causeswhose values
directly reflect the underlying state of the world, along with a parameterisation of effects of
these causes on immediate sensory experience. A generative model of visual sensation, for
example, might contain a hierarchy of latent variables that, at the top, corresponded to the
identities and poses of visual objects or the colour and direction of the illuminating light,
and at lower levels, represented local consequences of these more basic causes, for example
the orientation and contrast of local edges. Taken together, these variables would provide a
causal account for observations that correspond to photoreceptor activation. To apply such
a framework as a model for cortical processing, then, we take the sensory cortical activity
to represent the inferred values of the latent variables.

Thus, perceptual inference in this framework involves estimating the values of the causal
variables that gave rise to the sensory input, while developmental (unsupervised) learning
involves discovering the correct causal structure from sensory experience. Such a treatment
has been used to account for the structure of simple-cell receptive fields in visual cortex
[3, 4], and has been extended to further visual cortical response properties in subsequent
studies. In the present work our goal is to consider how such a model might be affected by
reinforcement. Thus, in addition to the latent causesLi that generate a sensory eventSi,
we consider an associated (possibly action-contingent) valueVi. This value is presumably
more parsimoniously associated with thecausesunderlying the sensory experience, rather
than with the details of the receptor activation, and so we take the sensory input and the
corresponding value to be conditionally independent given the cortical representation:

Pθ(Si, Vi) =
∫

dLi Pθ(Si | Li)Pθ(Vi | Li)Pθ(Li), (1)

whereθ is a general vector of model parameters. Thus, the variablesSi, Li andVi form
a Markov chain. In particular, this means that whatever informationSi carries aboutVi is
expressed (if the model is well-fit) in the cortical representationLi, making this structure
appropriate for value prediction. The causal variablesLi have taken on the rôle of the
“state” in standard RL.

3 Objective function

The natural objective in reinforcement learning is to maximise some form of accumulated
reward. However, the model of (1) is, by itself, descriptive rather than prescriptive. That
is, the parameters modelled (those determining the responses in the sensory cortex, rather
than in associative or motor areas) do not directly control actions or policies of action. In-
stead, these descriptive parameters only influence the animal’s accumulated reinforcement
through the accuracy of the description they generate. As a result, even though the ulti-
mate objective may be to maximise total reward, we need to use objective functions that
are closer in spirit to the likelihoods common in probabilistic unsupervised learning.

In particular, we consider functions of the form

L(θ) =
∑

i

α(Vi) log Pθ(Si) + β(Vi) log Pθ(Vi | Si) (2)



In this expression, the two log probabilities reflect the accuracy of stimulus representation,
andof value prediction, respectively. These two terms would appear alone in a straightfor-
ward representational model of the joint distribution over sensory stimuli and values. How-
ever, in considering a representational subsystem within a reinforcement learning agent,
where the overall goal is to maximise accumulated reward, it seems reasonable that the
demand for representative or predictive fidelity depend on the value associated with the
stimulus; this dependence is reflected here by a value-based weighting of the log probabil-
ities, which we assume will weight the more valuable cases more heavily.

4 Learning

While the objective function (2) does not depend explicitly on the cortical representa-
tion variables, it does depend on their distributions, through the marginal likelihoods
Pθ(Si) =

∫
dLi Pθ(Si, Li) andPθ(Vi | Si) =

∫
dLi Pθ(Vi, Li | Si). For all but the

simplest probabilistic models, optimising these integral expressions directly is computa-
tionally prohibitive. However, a standard technique called the Expectation-Maximisation
(EM) algorithm can be extended in a straightforward way to facilitate optimisation of func-
tions with the form we consider here.

We introduce2N unknown probability distributions over the cortical representation,
Qα(Li) andQβ(Li). Then, using Jensen’s inequality for convex functions, we obtain a
lower bound on the objective function:

L(θ) =
∑

i

α(Vi) log
∫

Qα(Li)
Qα(Li)

Pθ(Si, Li) + β(Vi) log
∫

Qβ(Li)
Qβ(Li)

Pθ(Li, Vi | Si)

≥
∑

i

α(Vi)
(
〈log Pθ(Si, Li)〉Qα(Li)

+ H[Qα(Li)]
)

+ β(Vi)
(
〈log Pθ(Li, Vi | Si)〉Qβ(Li)

+ H[Qβ(Li)]
)

= F(θ, Qα(Li), Qβ(Li))

It can be shown that, provided both functions are continuous and differentiable, local max-
ima of the “free-energy”F with respect to all of its arguments correspond, in their optimal
values ofθ, to local maxima ofL [5]. Thus, any hill-climbing technique applied to the free-
energy functional can be used to find parameters that maximise the objective. In particular,
the usual EM approach alternates maximisations (or just steps in the gradient direction)
with respect to each of the arguments ofF . In our case, this results in the following on-line
learning updates made after observing theith data point:

Qα(Li)← Pθ(Li | Si) (3a)

Qβ(Li)← Pθ(Li | Vi, Si) (3b)

θ ← θ + η∇θ

(
α(Vi) 〈log Pθ(Si, Li)〉Qα(Li)

+ β(Vi) 〈log Pθ(Li, Vi | Si)〉Qβ(Li)

)
(3c)

where the first two equations represent exact maximisations, while the third is a gradient
step, with learning rateη. It will be useful to rewrite (3c) as

θ ← θ + η
(
α(Vi) 〈∇θ log Pθ(Si, Li)〉Qα(Li)

+ β(Vi) 〈∇θ log Pθ(Li | Si)〉Qβ(Li)

+β(Vi) 〈∇θ log Pθ(Vi | Li)〉Qβ(Li)

)
(3c′)

where the conditioning onSi in the final term in not needed due to the Markovian structure
of the model.



5 Biologically Plausible Learning

Could something like the updates of (3) underlie the task- or neuromodulator-driven
changes that are seen in sensory cortex? Two out of the three steps seem plausible. In (3a),
the distributionPθ(Li | Si) represents the animal’s beliefs about the latent causes that led
to the current sensory experience, and as such is the usual product of perceptual inference.
In (3c′), the various log probabilities involved are similarly natural products of perceptual
or predictive computations. However, the calculation of the distributionPθ(Li | Vi, Si) in
(3b) is less easily reconciled with biological constraints.

There are two difficulties. First, the sensory input,Si, and the information needed to assess
its associated value,Vi, often arrive at quite different times. However, construction of the
posterior distribution in its full detail requires simultaneous knowledge of bothSi andVi,
and would therefore only be possible if rich information about the sensory stimulus were to
be preserved until the associated value could be determined. The feasibility of such detailed
persistence of sensory information is unclear. The second difficulty is an architectural one.
The connections from receptor epithelium to sensory areas of cortex are extensive, easily
capable of conveying the information needed to estimateP(L | S). By contrast, the brain
structures that seem to be associated with the evaluation of reinforcement, such as the
ventral tegmental area or nucleus basalis, make only sparse projections to early sensory
cortex; and these projections are frequently modulatory in character, rather than synaptic.
Thus, exact computation ofP(Li | Vi) (a component of the fullP(Li | Vi, Si)) seems
difficult to imagine.

It might seem at first that the former of these two problems would also apply to the weight
α(Vi) (in the first term of (3c′)), in that execution of this portion of the update would also
need to be delayed until this value-dependent weight could be calculated. On closer exam-
ination, however, it becomes evident that this difficulty can be avoided. The trick is that in
learning, the weight can be applied to the gradient. Thus, it is sufficient only to remember
the gradient, or indeed the corresponding change in synaptic weights. One possible way to
do this is to actually carry out an update of the weights when just the sensory stimulus is
known, but then consolidate this learning (or not) as indicated by the value-related weight.
Such a consolidation signal might easily be carried by a neuromodulatory projection from
subcortical nuclei involved in the evaluation of reinforcement.

We propose to solve the problem posed byP(L | S, V ) in essentially the same way, that is
by using information about reinforcement-value to guide modulatory reweighting or con-
solidation of synaptic changes that are initially based on the sensory stimulus alone. Note
that the expectations overP(Li | Si, Vi) that appear in (3c′) could, in principle, be re-
placed by sums over samples drawn from the distribution. Since learning is gradual and
on-line, such a stochastic gradient ascent algorithm would still converge (in probability)
to the optimum. Of course, sampling from this distribution is no more compatible with
the foregoing biological constraints than integrating over it. However, consider drawing
samplesL̃i from P(Li | Si), and then weighting the corresponding terms in the sum by
w(L̃i) = P(Vi | L̃i)/P(Vi | Si). Then we have, taking the second term in (3c′) for
example,〈

∇θ log Pθ(L̃i | Si)w(L̃i)
〉

L̃i∼P(Li|Si)
=

∫
dL̃i∇θ log Pθ(L̃i | Si)

P(Vi | L̃i)

P(Vi | Si)
P(L̃i | Si)

=

∫
dL̃i∇θ log Pθ(L̃i | Si)

P(Vi, L̃i | Si)

P(Vi | Si)
=

〈
∇θ log Pθ(L̃i | Si)

〉
L̃i∼P(Li|Si,Vi)

.

This approach to learning, which exploits the standard statistical technique ofimpor-
tance sampling [6], resolves both of the difficulties discussed above. It implies that
reinforcement-related processing and learning in the sensory systems of the brain proceeds
in these stages:



1. The sensory input is processed to infer beliefs about the latent causesPθ(Li | Si).
Oneor more samples̃Li are drawn from this distribution.

2. Synaptic weights are updated to follow the gradients〈∇θ log Pθ(Si, Li)〉Pθ(Li|Si)

and∇θ log Pθ(L̃i | Si) (corresponding to the first two terms of (3c′).

3. The associated value is predicted, both on the basis of the full posterior, giving
Pθ(Vi | Si), and on the basis of the sample(s), givingPθ(Vi | L̃i).

4. The actual value is observed or estimated, facilitating calculation of the weights
α(Vi), β(Vi), andw(L̃i).

5. These weights are conveyed to sensory cortex and used to consolidate (or not) the
synaptic changes of step 2.

This description does not encompass the updates corresponding to the third term of (3c′).
Such updates could be undertaken once the associated value became apparent; however,
the parameters that represent the explicit dependence of value on the latent variables are
unlikely to lie in the sensory cortex itself (instead determining computations in subsequent
processing).

5.1 Distributional Sampling

A commonly encountered difficulty with importance sampling has to do with the distribu-
tion of importance weightswi. If the range of weights is too extensive, the optimisation
will be driven primarily by few large weights, leading to slow and noisy learning. For-
tunately, it is possible to formulate an alternative, in whichdistributionsover the cortical
representational variables, rather than samples of the variables themselves, are randomly
generated and weighted appropriately.1

Let P̃i(L) be a distribution over the latent causesL, drawn randomly from a functional

distributionP(P̃i | Si), such that
〈
P̃i(L)

〉
P(P̃i|Si)

= P(Li | Si). Then, by analogy with

the result above, it can be shown that given importance weights

w(P̃i) =

∫
dL P(Vi | L)P̃i(L)

P(Vi | Si)
, (4)

wehave〈〈
∇θ log Pθ(L̃i | Si)

〉
P̃i(L)

w(P̃i)
〉

P̃i∼P(P̃i|Si)

= 〈∇θ log Pθ(Li | Si)〉L̃i∼P(Li|Si,Vi)
.

These distributional samples can thus be used in almost exactly the same manner as the
single-valued samples described above.

6 Simulation

A paradigmatic generative model structure is that underlying factor analysis (FA) [7], in
which both latent and observed variables are normally distributed:

Pθ(Li) = N (0, I) ; Pθ(Si | Li) = N (ΛSLi,ΨS) ; Pθ(Vi | Li) = N (ΛV Li,ΨV ) .
(5)

1This sampling scheme can also be formalised as standard importance sampling carried out with
a cortical representation re-expressed in terms of the parameters determining the distributionP̃i(L).
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Figure 1: Generative and learned sensory weights. See text for details.

Theparameters of the FA model (grouped here inθ) comprise two linear weight matrices
ΛS andΛV and two diagonal noise covariance matricesΨS andΨV . This model is sim-
ilar in its linear generative structure to the independent components analysis models that
have previously been employed in accounts of unsupervised development of visual cortical
properties [3, 4]; the only difference is in the assumed distribution of the latent variables.
The unit normal assumption of FA introduces a rotational degeneracy in solutions. This can
be resolved in general by constraining the weight matrixΛ = [ΛS ,ΛV ] to be orthogonal –
giving a version of FA known as principal factor analysis (PFA).

We used a PFA-based simulation to verify that the distributional importance-weighted sam-
pling procedure described here is indeed able to learn the correct model given sensory and
reinforcement-value data. Random vectors representing sensory inputs and associated val-
ues were generated according to (5); these were then used as inputs to a learning system.
The objective function optimised had both value-dependent weightsα(Vi) andβ(Vi) set to
unity; thus the learning system simply attempted to model the joint distribution of sensory
and reinforcement data.

The generative model comprised 11 latent variables, 40 observed sensory variables (which
were arranged linearly so as to represent 40 discrete values along a single sensory axis),
and a single reinforcement variable. Ten of the latent variables only affected the sensory
observations. The weight vectors corresponding to each of these are shown by the solid
lines in figure 1a. These “tuning curves” were designed to be orthogonal. The curves shown
in figure 1ahave been rescaled to have equal maximal amplitude; in fact the amplitudes
were randomly varied so that they formed a unique orthogonal basis for the data. These
features of the generative weight matrix were essential for PFA to be able to recover the
generative model uniquely. The final latent variable affected both reinforcement value and
the sensory input at a single point (indicated by the dashed line in figure 1a). Since the
output noise matrix in PFA can associate arbitrary variance with each sensory variable, a
model fit to only the sensory data would treat the influence of this latent cause as noise.
Only when the joint distribution over both sensory input and reinforcement is modelled



will this aspect of the sensory data be captured in the model parameters.

Learningwas carried out by processing data generated by the model described above one
sample at a time. The posterior distributionPθ(Li | Si) for the PFA model is Gaussian,
with covarianceΣL = (I + ΛT

SΨ−1
S ΛS)−1 and meanµL = ΣLΛT

SΨ−1
S Si. The distribu-

tional samples̃Pi were also taken to be Gaussian. Each had covariance0.6ΣL and mean
drawn randomly fromN (µL, 0.4ΣL).

Two simulations were performed. In one case learning proceeded according to the sampled
distributions̃Pi, with no importance weighting. In the other, learning was modulated by the
importance weights given by (4). In all other regards the two simulations were identical.
In particular, in both cases the reinforcement predictive weightsΛV were estimated, and
in both cases the orthogonality constraint of PFA was applied to the combined estimated
weight matrix[ΛS ,ΛV ]. Figure 1bandc shows the sensory weightsΛS learnt by each
of these procedures (again the curves have been rescaled to show relative weights). Both
algorithms recovered the basic tuning properties; however, only the importance sampling
algorithm was able to model the additional data feature that was linked to the prediction
of reinforcement value. The fact that in all other regards the two learning simulations
were identical demonstrates that the importance weighting procedure (rather than, say, the
orthogonality constraint) was responsible for this difference.

7 Summary

This paper has presented a framework within which the experimentally observed impact of
behavioural reinforcement on sensory plasticity might be understood. This framework rests
on a similar foundation to the recent work that has related unsupervised learning to sensory
response properties. It extends this foundation to consider prediction of the reinforcement
value associated with sensory stimuli. Direct learning by expectation-maximisation within
this framework poses difficulties regarding biological plausibility. However, these were
resolved by the introduction of an importance sampled approach, along with its extension
to distributional sampling. Information about reinforcement is thus carried by a weighting
signal that might be identified with the neuromodulatory signals in the brain.
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