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Abstract

We present test results from spike-timing correlation learning ex-
periments carried out with silicon neurons with STDP (Spike Tim-
ing Dependent Plasticity) synapses. The weight change scheme
of the STDP synapses can be set to either weight-independent or
weight-dependent mode. We present results that characterise the
learning window implemented for both modes of operation. When
presented with spike trains with different types of synchronisation
the neurons develop bimodal weight distributions. We also show
that a 2-layered network of silicon spiking neurons with STDP
synapses can perform hierarchical synchrony detection.

1 Introduction

Traditionally, Hebbian learning algorithms have interpreted Hebb’s postulate in
terms of coincidence detection. They are based on mean spike firing rates correla-
tions between presynaptic and postsynaptic spikes rather than upon precise timing
differences between presynaptic and postsynaptic spikes.

In recent years, new forms of synaptic plasticity that rely on precise spike-timing
differences between presynaptic and postsynaptic spikes have been discovered in
several biological systems|[1][2][3]. These forms of plasticity, generally termed Spike
Timing Dependent Plasticity (STDP), increase the synaptic efficacy of a synapse
when a presynaptic spike reaches the neuron a few milliseconds before the postsy-
naptic action potential. In contrast, when the postsynaptic neuron fires immediately
before the presynaptic neuron the strength of the synapse diminishes.

Much debate has taken place regarding the precise characteristics of the learning
rules underlying STDP [4]. The presence of weight dependence in the learning rule
has been identified as having a dramatic effect on the computational properties of
STDP. When weight modifications are independent of the weight value, a strong
competition takes places between the synapses. Hence, even when no spike-timing
correlation is present in the input, synapses develop maximum or minimum strength
so that a bimodal weight distribution emerges from learning[5]. Conversely, if the
learning rule is strongly weight-dependent, such that strong synapses receive less po-
tentiation than weaker ones while depression is independent of the synaptic strength,



a smooth unimodal weight distribution emerges from the learning process[6].

In this paper we present circuits to support STDP on silicon. Bimodal weight
distributions are effectively binary. Hence, they are suited to analog VLSI imple-
mentation, as the main barrier to the implementation of on-chip learning, the long
term storage of precise analog weight values, can be rendered unimportant. How-
ever, weight-independent STDP creates a highly unstable learning process that may
hinder learning when only low levels of spike-timing correlations exist and neurons
have few synapses. The circuits proposed here introduce a tunable weight depen-
dence mechanism which stabilises the learning process. This allows finer correlations
to be detected than does a weight-independent scheme. In the weight-dependent
learning experiments reported here the weight-dependence is set at moderate levels
such that bimodal weight distributions still result from learning.

The analogue VLSI implementation of spike-based learning was first investi-
gated in [7]. The authors used a weight-dependent scheme and concentrated on the
weight normalisation properties of the learning rule. In [8], we proposed circuits
to implement asymmetric STDP which lacked the weight-dependent mechanism.
More recently, others have also investigated asymmetric STDP learning using VLSI
systems[9][10]. STDP synapses that contain an explicit bistable mechanism have
been proposed in [10]. Long-term bistable synapses are a good technological so-
lution for weight storage. However, the maximum and minimum weight limits in
bimodal STDP already act as natural attractors. An explicit bistable mechanism
may increase the instability of the learning process and may hinder, in consequence,
the detection of subtle correlations. In contrast, the circuits that we propose here
introduce a mechanism that tends to stabilise learning.

2 STDP circuits

The circuits in Figure 1 implement the asymmetric decaying learning window with
the abrupt transition at the origin that is so characteristic of STDP. The weight of
each synapse is represented by the charge stored on its weight capacitor C,. The
strength of the weight is inversely proportional to V,,. The closer the value of V,,
is to GND , the stronger is the synapse.

Our silicon spiking neurons signal their firing events with the sequence of pulses
seen in Figure lc. Signal post_bp is back-propagated to the afferent synapses of the
neuron. Long is a longer pulse (a few us) used in the current neuron (termed as
signal post Long in Figure 1b). Long is also sent to input synapses of following neu-
rons in the activity path (see preLong in la). Finally, spikeOut is the presynaptic
spike for the next receiving neuron (termed pre in Figure 1la). More details on the
implementation of the silicon neuron can be found in [11]

In Figure 1la, if preLong is long enough (a few us) the voltage created by Ip,er on
the diode connected transistor N5 is copied to the gate of N2. This voltage across
Cpot decays with time from its peak value due to a leakage current set by Vipor.
When the postsynaptic neuron fires, a back propagation pulse post_bp switches N3
on. Therefore, the weight is potentiated (V,, decreased) by an amount which reflects
the time elapsed since the last presynaptic event.

A weight dependence mechanism is introduced by the simple linearised V-I con-
figuration P5-P6 and current mirror N7-N6 (see Figure 1a). P5 is a low gain tran-
sistor operated in strong inversion whereas P6 is a wide transistor made to operate
in weak inversion such that it has even higher gain. When the value of V,, decreases
(weight increase) the current through P5-P6 increases, but P5 is maintained in the
linear region by the high gain transistor. Thus, a current proportional to the value
of the weight is subtracted from I,.:. The resulting smaller current injected into
N5 will cause a drop in the peak of potentiation for large weight values.
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Figure 1: Weight change circuits. (a) The strength of the synapse is inversely proportional
to the value of Vi,. The lower Vi, the smaller the weight of the synapse. This section of
the weight change circuit detects causal spike correlations. (b) A single depression circuit
present in the soma of the neuron creates the decaying shape of the depression side of the
learning window. (¢) Waveforms of pulses that signal an action potential event. They are
used to stimulate the weight change circuits.

In a similar manner to potentiation, the weight is weakened by the circuit of
Figure 1b when it detects a non-causal interaction between a presynaptic and a
postsynaptic spike. When a postsynaptic spike event is generated a postLong pulse
charges Cgep. The charge accumulated leaks linearly through N3 at a rate set by
Vodep- A set of non-linear decaying currents (Igep, ) is sent to the weight change
circuits placed in the input synapse (see I4ep in Figure 1a). When a presynaptic
spike reaches a synapse P1 is switched on. If this occurs soon enough after the
postLong pulse was generated, V,, is brought closer to Vdd (weight strength de-
creased). Only one depression circuit per neuron is required since the depression
part of the learning rule is independent of the weight value.

A chip including 5 spiking neurons with STDP synapses has been fabricated us-
ing a standard 0.6um CMOS process. Each neuron has 6 learning synapses, a single
excitatory non-learning synapse and a single inhibitory one. Along with the silicon
neuron circuits, the chip contains several voltage buffers that allow us to monitor
the behaviour of the neuron. The testing setup uses a networked logic analysis sys-
tem to stimulate the silicon neuron and to capture the results of on-chip learning.
An externally addressable circuit creates preLong and pre pulses to stimulate the
synapses.

3 Weight-independent learning rule

3.1 Characterisation

A weight-independent weight change regime is obtained by setting V,. to Vdd in
the weight change circuit presented in Figure 1 . The resulting learning window
on silicon can be seen in Figure 2. Each point in the curve was obtained from the
stimulation of the fix synapse and a learning synapse with a varying delay between
them. As can be seen in the figure, the circuit is highly tunable. Figure 2a shows
that the peaks for potentiation and depression can be set independently. Also, as
shown in Figure 2b the decay of the learning window for both sides of the curve can
be set independently of the maximum weight change with Vigep and Vipoe. Since the
weight-dependent mechanism is switched off, the curve of the learning window is
the same for a wide range of V,,,. Obviously, when the weight voltage V., approaches
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Figure 2: Experimental learning window for weight-independent STDP. The curves show
the weight modification induced in the weight of a learning synapse for different time in-
tervals between the presynaptic and the postsynaptic spike. For the results shown, the
synapses were operated in a weight-independent mode. (a) The peaks of the learning win-
dow is shown for 4 different settings. The peak for potentiation and depression are tuned
independently with Iypor and Ivaep (b) The rate of decay of the learning window for po-
tentiation and depression can be set independently without affecting the mazimum weight
change.

any of the power supply rails a saturation effect occurs as the transistors injecting
current in the weight capacitor leave saturation. For the learning experiment with
weight-independent weight change the area under the potentiation curve should be
approximately 50% smaller than the area under the depression region.

3.2 Learning spike-timing correlations with weight-independent
learning

We stimulated a 6-synapse silicon neuron with 6 independent Poisson-distributed
spike trains with a rate of 30Hz. An absolute refractory period of 10ms was enforced
between consecutive spikes of each train. Refractoriness helps break the temporal
axis into disjoint segments so that presynaptic spikes can make less noisy ”predic-
tions” of the postsynaptic time of firing. We introduced spike-timing correlations
between the inputs for synapses 1 and 2. Synapses 3 to 6 were uncorrelated.

The evolution of the 6 weights for one of such experiments is show in Figure 3.
The correlated inputs shared 35% of the spike-timings. They were constructed by
merging two independent 19.5Hz Poisson-distributed spike trains with a common
10.5Hz spike train. As can be seen in Figure 3 the weights of synapses that receive
correlated activity reach maximum strength (V,, close to GND) whereas the rest
decay towards Vdd. Clearly, the bimodal weight distribution reflects the correlation
pattern of the input signals.

3.3 Hierarchical synchrony detection

To experiment with hierarchical synchrony detection we included in the chip a
small 2-layered network of STDP silicon neurons with the configuration shown
in Figure 4. Neurons in the first layer were stimulated with independent sets of
Poisson-distributed spike trains with a mean spiking rate of 30Hz. As with the
experiments presented in the preceding section, a 10ms refractory period was
forced between consecutive spikes. A primary level of correlation was introduced
for each neuron in the first layer as signalled by the arrowed bridge between the
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Figure 3: Learning experiment with weight-independent STDP.
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Figure 4: Final weight values for a 2-layered network of STDP silicon neurons.

inputs of synapses 1 and 2 of each neuron. For the results shown here these 2
inputs of each neuron shared 50% of the spike-timings (indicated with 0.5 on top
of the double-arrowed bridge of Figure 4). A secondary level of correlation was
introduced between the inputs of synapses 1 and 2 of both N1 and N2, as signalled
by the arrow linking the first level of correlations of N1 and N2. This second level
of correlations is weaker, with only 25% of shared spikes (indicated with 0.25 in
Figure 4). The two direct inputs of N5, in the second layer, were also Poisson
distributed but had a rate of 15Hz.

The evolution of the weights recorded for the experiment just described is
presented in Figure 5. On the left, we see the weight evolution for N1. The weights
corresponding to synapses 1 and 2 evolve towards the maximum value (i.e. GND).
The weights of the remaining synapses, which receive random activity, decrease
(i.e. V,, close to Vdd). The other neurons in the 1st layer have weight evolutions
similar to that of N1. Synapses with synchronised activity corresponding to the
1st level of correlations win the competition imposed by STDP. The V,, traces
on the right-hand side of Figure 5 show how N5 in the second layer captures the
secondary level of correlation. Weights of the synapses receiving input from N1
and N2 are reinforced while the rest are decreased towards the minimum possible
weight value (V,, = Vdd). Clearly, the second layer only captures features from
signals which have already a basic level of interesting features (primary level of
correlations) detected by the first layer.

In Figure 4, we have represented graphically the final weight distribution for
all synapses. As marked by filled circles, only synapses in the path of hierarchical
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Figure 5: Hierarchical synchrony detection. (a) Weight evolution of neuron in first layer.
(b) Weight evolution of output neuron in 2nd layer.

synchrony activity develop maximum weight strength. In contrast, weights with
final minimum strength are indicated by empty circles. These correspond to
synapses of first layer neurons which received uncorrelated inputs or synapses of
N5 which received inputs from neurons stimulated without a secondary level of
correlations (N3-N4).

4 Weight-dependent learning rule

4.1 Characterisation

The STDP synapses presented can also be operated in weight-dependent mode.
The weight dependent learning window implemented is similar to that which seems
to underly some STDP recordings from biological neurons [6]. Figure 6a shows
chip results of the weight-dependent learning rule. The weight change curve for
potentiation is given for 3 different weight values. The larger the weight value (low
Vi), the smaller the degree of potentiation induced in the synapse. The depression
side of the learning window is unaffected by the weight value since the depression
circuit shown in Figure 1b does not have an explicit weight-dependent mechanism.

4.2 Learning spike-timing correlations with weight-dependent learning

Figure 6b shows the weight evolution for an experiment where the correlated ac-
tivity between synapses 1 and 2 consisted of only 20% of common spike-timings.
As in the weight-independent experiments, the mean firing rate was 30Hz and a
refractory period of 10ms was enforced.

Finally, we stimulated a neuron in weight-dependent mode with a form of syn-
chrony where spike-timings coincided in a time window (window of correlation)
instead of being perfectly matched (syn0-1). The uncorrelated inputs (syn2-5) were
Poisson-distributed spike trains. The synchrony data was an inhomogeneous Pois-
son spike train with a rate modulated by a binary signal with random transition
points. Figure 7 shows a normalised histogram of spike intervals between the corre-
lated inputs for synapses 0 and 1 (Figure 7a) and the histogram of the uncorrelated
inputs for synapses 2 and 3 (Figure 7b). Again, as can be seen in Figure 7c the
neuron with weight-dependent STDP can detect this low-level of synchrony with
non-coincident spikes. Clearly, the bimodal weight distribution identifies the syn-
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Figure 6: (a) Ezperimental learning window for weight-dependent STDP (b) Learning
experiment with weight-dependent STDP. Synapses 1 and 2 share 20% of spike-timings.
The other synapses receive completely uncorrelated activity. Correlated activity causes
synapses to develop strong weights (Vi close to GND).

chrony pattern of the inputs.

5 Conclusions

The circuits presented can be used to study both weight-dependent and weight-
independent learning rules. The influence of weight-dependence on the final weight
distribution has been studied extensively[5][6]. In this paper, we have concen-
trated on the stabilising effect that moderate weight-dependence can have on learn-
ing processes that develop bimodal weight distributions. By introducing weight-
dependence subtle spike-timing correlations can be detected.

We have also shown experimentally that a small feed-forward network of silicon
neurons with STDP synapses can detect a hierarchical synchrony structure embed-
ded in noisy spike trains.

We are currently investigating the synchrony amplification properties of silicon
neurons with bimodal STDP. We are also working on a new chip that uses lateral-
inhibitory connections between neurons to classify data with complex synchrony
patterns.
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