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Abstract

Margin maximizing properties play an important role in the analysis of classi£-
cation models, such as boosting and support vector machines. Margin maximiza-
tion is theoretically interesting because it facilitates generalization error analysis,
and practically interesting because it presents a clear geometric interpretation of
the models being built. We formulate and prove a suf£cient condition for the
solutions of regularized loss functions to converge to margin maximizing separa-
tors, as the regularization vanishes. This condition covers the hinge loss of SVM,
the exponential loss of AdaBoost and logistic regression loss. We also generalize
it to multi-class classi£cation problems, and present margin maximizing multi-
class versions of logistic regression and support vector machines.

1 Introduction

Assume we have a classi£cation “learning” sample {xi, yi}n
i=1 with yi ∈ {−1,+1}. We

wish to build a model F (x) for this data by minimizing (exactly or approximately) a loss
criterion

∑
i C(yi, F (xi)) =

∑
i C(yiF (xi)) which is a function of the margins yiF (xi)

of this model on this data. Most common classi£cation modeling approaches can be cast
in this framework: logistic regression, support vector machines, boosting and more. The
model F (x) which these methods actually build is a linear combination of dictionary func-
tions coming from a dictionary H which can be large or even in£nite:

F (x) =
∑

hj∈H
βjhj(x)

and our prediction at point x based on this model is sgnF (x).

When |H| is large, as is the case in most boosting or kernel SVM applications, some regu-
larization is needed to control the “complexity” of the model F (x) and the resulting over-
£tting. Thus, it is common that the quantity actually minimized on the data is a regularized
version of the loss function:

β̂(λ) = min
β

∑

i

C(yiβ
′h(xi)) + λ‖β‖p

p(1)

where the second term penalizes for the lp norm of the coef£cient vector β (p ≥ 1 for
convexity, and in practice usually p ∈ {1, 2}), and λ ≥ 0 is a tuning regularization parame-
ter. The 1- and 2-norm support vector machine training problems with slack can be cast in
this form ([6], chapter 12). In [8] we have shown that boosting approximately follows the



“path” of regularized solutions traced by (1) as the regularization parameter λ varies, with
the appropriate loss and an l1 penalty.

The main question that we answer in this paper is: for what loss functions does β̂(λ)
converge to an “optimal” separator as λ → 0? The de£nition of “optimal” which we will
use depends on the lp norm used for regularization, and we will term it the “lp-margin
maximizing separating hyper-plane”. More concisely, we will investigate for which loss
functions and under which conditions we have:

lim
λ→0

β̂(λ)

‖β̂(λ)‖
= arg max

‖β‖p=1
min

i
yiβ

′h(xi)(2)

This margin maximizing property is interesting for three distinct reasons. First, it gives us
a geometric interpretation of the “limiting” model as we relax the regularization. It tells
us that this loss seeks to optimally separate the data by maximizing a distance between a
separating hyper-plane and the “closest” points. A theorem by Mangasarian [7] allows us
to interpret lp margin maximization as lq distance maximization, with 1/p + 1/q = 1, and
hence make a clear geometric interpretation. Second, from a learning theory perspective
large margins are an important quantity — generalization error bounds that depend on
the margins have been generated for support vector machines ([10] — using l2 margins)
and boosting ( [9] — using l1 margins). Thus, showing that a loss function is “margin
maximizing” in this sense is useful and promising information regarding this loss function’s
potential for generating good prediction models. Third, practical experience shows that
exact or approximate margin maximizaion (such as non-regularized kernel SVM solutions,
or “in£nite” boosting) may actually lead to good classi£cation prediction models. This is
certainly not always the case, and we return to this hotly debated issue in our discussion.

Our main result is a suf£cient condition on the loss function, which guarantees that (2)
holds, if the data is separable, i.e. if the maximum on the RHS of (2) is positive. This
condition is presented and proven in section 2. It covers the hinge loss of support vector
machines, the logistic log-likelihood loss of logistic regression, and the exponential loss,
most notably used in boosting. We discuss these and other examples in section 3. Our result
generalizes elegantly to multi-class models and loss functions. We present the resulting
margin-maximizing versions of SVMs and logistic regression in section 4.

2 Suf£cient condition for margin maximization

The following theorem shows that if the loss function vanishes “quickly” enough, then it
will be margin-maximizing as the regularization vanishes. It provides us with a uni£ed
margin-maximization theory, covering SVMs, logistic regression and boosting.

Theorem 2.1 Assume the data {xi, yi}n
i=1 is separable, i.e. ∃β s.t. mini yiβ

′h(xi) > 0.
Let C(y, f) = C(yf) be a monotone non-increasing loss function depending on the margin
only.
If ∃T > 0 (possibly T = ∞ ) such that:

lim
t↗T

C(t · [1 − ε])
C(t)

= ∞, ∀ε > 0(3)

Then C is a margin maximizing loss function in the sense that any convergence point of the

normalized solutions β̂(λ)

‖β̂(λ)‖p
to the regularized problems (1) as λ → 0 is an lp margin-

maximizing separating hyper-plane. Consequently, if this margin-maximizing hyper-plane
is unique, then the solutions converge to it:

lim
λ→0

β̂(λ)

‖β̂(λ)‖p

= arg max
‖β‖p=1

min
i

yiβ
′h(xi)(4)



Proof We prove the result separately for T = ∞ and T < ∞.

a. T = ∞:

Lemma 2.2 ‖β̂(λ)‖p
λ→0−→ ∞

Proof Since T = ∞ then C(m) > 0 ∀m > 0, and limm→∞ C(m) = 0. Therefore, for
loss+penalty to vanish as λ → 0, ‖β̂(λ)‖p must diverge, to allow the margins to diverge.

Lemma 2.3 Assume β1, β2 are two separating models, with ‖β1‖p = ‖β2‖p = 1, and β1

separates the data better, i.e.: 0 < m2 = mini yih(xi)′β2 < m1 = mini yih(xi)′β1.
Then ∃U = U(m1,m2) such that

∀t > U,
∑

i

C(yih(xi)′(tβ1)) <
∑

i

C(yih(xi)′(tβ2))

In words, if β1 separates better than β2 then scaled-up versions of β1 will incur smaller
loss than scaled-up versions of β2, if the scaling factor is large enough.

Proof Since condition (3) holds with T = ∞, there exists U such that ∀t > U, C(tm2)
C(tm1)

>

n. Thus from C being non-increasing we immediately get:

∀t > U,
∑

i

C(yih(xi)′(tβ1)) ≤ n · C(tm1) < C(tm2) <
∑

i

C(yih(xi)′(tβ2))

Proof of case a.: Assume β∗ is a convergence point of β̂(λ)

‖β̂(λ)‖p
as λ → 0, with ‖β∗‖p = 1.

Now assume by contradiction β̃ has ‖β̃‖p = 1 and bigger minimal lp margin. Denote the
minimal margins for the two models by m∗ and m̃, respectively, with m∗ < m̃.
By continuity of the minimal margin in β, there exists some open neighborhood of β∗ on
the lp sphere:

Nβ∗ = {β : ‖β‖p = 1, ‖β − β∗‖2 < δ}
and an ε > 0, such that:

min
i

yiβ
′h(xi) < m̃ − ε, ∀β ∈ Nβ∗

Now by lemma 2.3 we get that exists U = U(m̃, m̃ − ε) such that tβ̃ incurs smaller loss

than tβ for any t > U, β ∈ Nβ∗ . Therefore β∗ cannot be a convergence point of β̂(λ)

‖β̂(λ)‖p
.

b. T < ∞

Lemma 2.4 C(T ) = 0 and C(T − δ) > 0, ∀δ > 0.

Proof From condition (3), C(T−Tε)
C(T ) = ∞. Both results follow immediately, with δ = Tε.

Lemma 2.5 limλ→0 mini yiβ̂(λ)′h(xi) = T

Proof Assume by contradiction that there is a sequence λ1, λ2, ... ↘ 0 and ε > 0 s.t.
∀j, mini yiβ̂(λj)′h(xi) ≤ T − ε.
Pick any separating normalized model β̃ i.e. ‖β̃‖p = 1 and m̃ := mini yiβ̃

′h(xi) > 0.

Then for any λ < m̃p C(T−ε)
T p we get:

∑

i

C(yi
T

m̃
β̃′h(xi)) + λ‖ T

m̃
β̃‖p

p < C(T − ε)



since the £rst term (loss) is 0 and the penalty is smaller than C(T − ε) by condition on λ.
But ∃j0 s.t. λj0 < m̃p C(T−ε)

T p and so we get a contradiction to optimality of β̂(λj0), since

we assumed mini yiβ̂(λj0)
′h(xi) ≤ T − ε and thus:

∑

i

C(yiβ̂(λj0)
′h(xi)) ≥ C(T − ε)

We have thus proven that lim infλ→0 mini yiβ̂(λ)′h(xi) ≥ T . It remains to prove equality.
Assume by contradiction that for some value of λ we have m := mini yiβ̂(λ)′h(xi) > T .
Then the re-scaled model T

m β̂(λ) has the same zero loss as β̂(λ), but a smaller penalty,

since ‖ T
m β̂(λ)‖ = T

m‖β̂(λ)‖ < ‖β̂(λ)‖. So we get a contradiction to optimality of β̂(λ).

Proof of case b.: Assume β∗ is a convergence point of β̂(λ)

‖β̂(λ)‖p
as λ → 0, with ‖β∗‖p = 1.

Now assume by contradiction β̃ has ‖β̃‖p = 1 and bigger minimal margin. Denote the
minimal margins for the two models by m∗ and m̃, respectively, with m∗ < m̃.

Let λ1, λ2, ... ↘ 0 be a sequence along which β̂(λj)

‖β̂(λj)‖p
→ β∗. By lemma 2.5 and our

assumption, ‖β̂(λj)‖p → T
m∗ > T

m̃ . Thus, ∃j0 such that ∀j > j0, ‖β̂(λj)‖p > T
m̃ and

consequently:
∑

i

C(yiβ̂(λj)′h(xi)) + λ‖β̂(λj)‖p
p > λ(

T

m̃
)p =

∑

i

C(yi
T

m̃
β̃h(xi)) + λ‖ T

m̃
β̃‖p

p

So we get a contradiction to optimality of β̂(λj).

Thus we conclude for both cases a. and b. that any convergence point of β̂(λ)

‖β̂(λ)‖p
must

maximize the lp margin. Since ‖ β̂(λ)

‖β̂(λ)‖p
‖p = 1, such convergence points obviously exist.

If the lp-margin-maximizing separating hyper-plane is unique, then we can conclude:

β̂(λ)

‖β̂(λ)‖p

→ β̂ := arg max
‖β‖p=1

min
i

yiβ
′h(xi)

Necessity results

A necessity result for margin maximization on any separable data seems to require either
additional assumptions on the loss or a relaxation of condition (3). We conjecture that if we
also require that the loss is convex and vanishing (i.e. limm→∞C(m) = 0) then condition
(3) is suf£cient and necessary. However this is still a subject for future research.

3 Examples

Support vector machines

Support vector machines (linear or kernel) can be described as a regularized problem:

min
β

∑

i

[1 − yiβ
′h(xi)]+ + λ‖β‖p

p(5)

where p = 2 for the standard (“2-norm”) SVM and p = 1 for the 1-norm SVM. This
formulation is equivalent to the better known “norm minimization” SVM formulation in
the sense that they have the same set of solutions as the regularization parameter λ varies
in (5) or the slack bound varies in the norm minimization formulation.



The loss in (5) is termed “hinge loss” since it’s linear for margins less than 1, then £xed
at 0 (see £gure 1). The theorem obviously holds for T = 1, and it veri£es our knowledge
that the non-regularized SVM solution, which is the limit of the regularized solutions,
maximizes the appropriate margin (Euclidean for standard SVM, l1 for 1-norm SVM).

Note that our theorem indicates that the squared hinge loss (AKA truncated squared loss):

C(yi, F (xi)) = [1 − yiF (xi)]2+
is also a margin-maximizing loss.

Logistic regression and boosting

The two loss functions we consider in this context are:

Exponential : Ce(m) = exp(−m)(6)

Log likelihood : Cl(m) = log(1 + exp(−m))(7)

These two loss functions are of great interest in the context of two class classi£cation: Cl

is used in logistic regression and more recently for boosting [4], while Ce is the implicit
loss function used by AdaBoost - the original and most famous boosting algorithm [3] .

In [8] we showed that boosting approximately follows the regularized path of solutions
β̂(λ) using these loss functions and l1 regularization. We also proved that the two loss
functions are very similar for positive margins, and that their regularized solutions converge
to margin-maximizing separators. Theorem 2.1 provides a new proof of this result, since
the theorem’s condition holds with T = ∞ for both loss functions.

Some interesting non-examples

Commonly used classi£cation loss functions which are not margin-maximizing include any
polynomial loss function: C(m) = 1

m , C(m) = m2, etc. do not guarantee convergence of
regularized solutions to margin maximizing solutions.

Another interesting method in this context is linear discriminant analysis. Although it does
not correspond to the loss+penalty formulation we have described, it does £nd a “decision
hyper-plane” in the predictor space.

For both polynomial loss functions and linear discriminant analysis it is easy to £nd exam-
ples which show that they are not necessarily margin maximizing on separable data.

4 A multi-class generalization

Our main result can be elegantly extended to versions of multi-class logistic regression and
support vector machines, as follows. Assume the response is now multi-class, with K ≥ 2
possible values i.e. yi ∈ {c1, ..., cK}. Our model consists of a “prediction” for each class:

Fk(x) =
∑

hj∈H
β

(k)
j hj(x)

with the obvious prediction rule at x being arg maxk Fk(x).
This gives rise to a K − 1 dimensional “margin” for each observation. For y = ck, de£ne
the margin vector as:

m(ck, f1, ..., fK) = (fk − f1, ..., fk − fk−1, fk − fk+1, ..., fk − fK)′(8)

And our loss is a function of this K − 1 dimensional margin:

C(y, f1, ..., fK) =
∑

k

I{y = ck}C(m(ck, f1, ..., fK))
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Figure 1: Margin maximizing loss functions for 2-class problems (left) and the SVM 3-class loss
function of section 4.1 (right)

The lp-regularized problem is now:

β̂(λ) = arg min
β(1),...,β(K)

∑

i

C(yi, h(xi)′β(1), ..., h(xi)′β(K)) + λ
∑

k

‖β(k)‖p
p(9)

Where β̂(λ) = (β̂(1)(λ), ..., β̂(K)(λ))′ ∈ RK·|H|.

In this formulation, the concept of margin maximization corresponds to maximizing the
minimal of all n · (K − 1) normalized lp-margins generated by the data:

max
‖β(1)‖p

p+...+‖β(K)‖p
p=1

min
i

min
yi �=ck

h(xi)′(β(yi) − β(k))(10)

Note that this margin maximization problem still has a natural geometric interpretation, as
h(xi)′(β(yi) − β(k)) > 0 ∀i, k 
= yi implies that the hyper-plane h(x)′(β(j) − β(k)) = 0
successfully separates classes j and k for any two classes.

Here is a generalization of the optimal separation theorem 2.1 to multi-class models:

Theorem 4.1 Assume C(m) is commutative and decreasing in each coordinate, then if
∃T > 0 (possibly T = ∞ ) such that:

limt↗T
C(t[1 − ε], tu1, ...tuK−2)

C(t, tv1, ..., tvK−2)
= ∞,(11)

∀ε > 0, u1 ≥ 1, ..., uK−2 ≥ 1, v1 ≥ 1, ...vK−2 ≥ 1

Then C is a margin-maximizing loss function for multi-class models, in the sense that any

convergence point of the normalized solutions to (9), β̂(λ)

‖β̂(λ)‖p
, attains the optimal separa-

tion as de£ned in (10)

Idea of proof The proof is essentially identical to the two class case, now considering the
n · (K − 1) margins on which the loss depends. The condition (11) implies that as the
regularization vanishes the model is determined by the minimal margin, and so an optimal
model puts the emphasis on maximizing that margin.



Corollary 4.2 In the 2-class case, theorem 4.1 reduces to theorem 2.1.

Proof The loss depends on β(1) − β(2), the penalty on ‖β(1)‖p
p + ‖β(2)‖p

p. An optimal
solution to the regularized problem must thus have β(1) +β(2) = 0, since by transforming:

β(1) → β(1) − β(1) + β(2)

2
, β(2) → β(2) − β(1) + β(2)

2

we are not changing the loss, but reducing the penalty, by Jensen’s inequality:

‖β(1) − β(1) + β(2)

2
‖p

p + ‖β(2) − β(1) + β(2)

2
‖p

p = 2‖β(1) − β(2)

2
‖p

p ≤ ‖β(1)‖p
p + ‖β(2)‖p

p

So we can conclude that β̂(1)(λ) = −β̂(2)(λ) and consequently that the two margin maxi-
mization tasks (2), (10) are equivalent.

4.1 Margin maximization in multi-class SVM and logistic regression

Here we apply theorem 4.1 to versions of multi-class logistic regression and SVM.

For logistic regression, we use a slightly different formulation than the “standard” logistic
regression models, which uses class K as a “reference” class, i.e. assumes that β(K) = 0.
This is required for non-regularized £tting, since without it the solution is not uniquely
de£ned. However, using regularization as in (9) guarantees that the solution will be unique
and consequently we can “symmetrize” the model — which allows us to apply theorem
4.1. So the loss function we use is (assume y = ck belongs to class k):

C(y, f1, ..., fK) = − log
efk

ef1 + ... + efK
=(12)

= log(ef1−fk + ... + efk−1−fk + 1 + efk+1−fk + ... + efK−fk)

with the linear model: fj(xi) = h(xi)′β(j). It is not dif£cult to verify that condition (11)
holds for this loss function with T = ∞, using the fact that log(1 + ε) = ε + O(ε2). The
sum of exponentials which results from applying this £rst-order approximation satis£es
(11), and as ε → 0, the second order term can be ignored.

For support vector machines, consider a multi-class loss which is a natural generalization
of the two-class loss:

C(m) =
K−1∑

j=1

[1 − mj ]+(13)

Where mj is the j’th component of the multi-margin m as in (8). Figure 1 shows this loss
for K = 3 classes as a function of the two margins. The loss+penalty formulation using 13
is equivalent to a standard optimization formulation of multi-class SVM (e.g. [11]):

max c

s.t. h(xi)′(β(yi) − β(k)) ≥ c(1 − ξik), i ∈ {1, ...n}, k ∈ {1, ...,K}, ck 
= yi

ξik ≥ 0 ,
∑

i,k

ξik ≤ B ,
∑

k

‖β(k)‖p
p = 1

As both theorem 4.1 (using T = 1) and the optimization formulation indicate, the regular-
ized solutions to this problem converge to the lp margin maximizing multi-class solution.



5 Discussion

What are the properties we would like to have in a classi£cation loss function? Recently
there has been a lot of interest in Bayes-consistency of loss functions and algorithms ([1]
and references therein), as the data size increases. It turns out that practically all “rea-
sonable” loss functions are consistent in that sense, although convergence rates and other
measures of “degree of consistency” may vary.

Margin maximization, on the other hand, is a £nite sample optimality property of loss func-
tions, which is potentially of decreasing interest as sample size grows, since the training
data-set is less likely to be separable. Note, however, that in very high dimensional pre-
dictor spaces, such as those typically used by boosting or kernel SVM, separability of any
£nite-size data-set is a mild assumption, which is violated only in pathological cases.

We have shown that the margin maximizing property is shared by some popular loss func-
tions used in logistic regression, support vector machines and boosting. Knowing that
these algorithms “converge”, as regularization vanishes, to the same model (provided they
use the same regularization) is an interesting insight. So, for example, we can conclude
that 1-norm support vector machines, exponential boosting and l1-regularized logistic re-
gression all facilitate the same non-regularized solution, which is an l1-margin maximizing
separating hyper-plane. From Mangasarian’s theorem [7] we know that this hyper-plane
maximizes the l∞ distance from the closest points on either side.

The most interesting statistical question which arises is: are these “optimal” separating
models really good for prediction, or should we expect regularized models to always do
better in practice? Statistical intuition supports the latter, as do some margin-maximizing
experiments by Breiman [2] and Grove and Schuurmans [5]. However it has also been ob-
served that in many cases margin-maximization leads to reasonable prediction models, and
does not necessarily result in over-£tting. We have had similar experience with boosting
and kernel SVM. Settling this issue is an intriguing research topic, and one that is criti-
cal in determining the practical importance of our results, as well as that of margin-based
generalization error bounds.
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