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Abstract 

Mutual Boosting is a method aimed at incorporating contextual 
information to augment object detection. When multiple detectors 
of objects and parts are trained in parallel using AdaBoost [1], 
object detectors might use the remaining intermediate detectors to 
enrich the weak learner set. This method generalizes the efficient 
features suggested by Viola and Jones [2] thus enabling 
information inference between parts and objects in a compositional 
hierarchy. In our experiments eye-, nose-, mouth- and face 
detectors are trained using the Mutual Boosting framework. Results 
show that the method outperforms applications overlooking 
contextual information. We suggest that achieving contextual 
integration is a step toward human-like detection capabilities. 

1  Introduction 

Classification of multiple objects in complex scenes is one of the next challenges 
facing the machine learning and computer vision communities. Although, real-time 
detection of single object classes has been recently demonstrated [2], naïve 
duplication of these detectors to the multiclass case would be unfeasible. Our goal is 
to propose an efficient method for detection of multiple objects in natural scenes.  

Hand-in-hand with the challenges entailing multiclass detection, some distinct 
advantages emerge as well. Knowledge on position of several objects might shed 
light on the entire scene (Figure 1). Detection systems that do not exploit the 
information provided by objects on the neighboring scene will be suboptimal.  
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Figure 1: Contextual spatial relationships assist detection A. in absence of facial 
components (whitened blocking box) faces can be detected by context (alignment of 
neighboring faces). B. keyboards can be detected when they appear under monitors.  



 

Many human and computer vision models postulate explicitly or implicitly that 
vision follows a compositional hierarchy. Grounded features (that are 
innate/hardwired and are available prior to learning) are used to detect salient parts, 
these parts in turn enable detection of complex objects [3, 4], and finally objects are 
used to recognize the semantics of the entire scene. Yet, a more accurate assessment 
of human performance reveals that the visual system often violates this strictly 
hierarchical structure in two ways. First, part and whole detection are often 
evidently interacting [5, 6]. Second, several layers of the hierarchy are occasionally 
bypassed to enable swift direct detection. This phenomenon is demonstrated by gist 
recognition experiments where the semantic classification of an entire scene is 
performed using only minimal low level feature information [7]. 

The insights emerging from observing human perception were adopted by the object 
detection community. Many object detection algorithms bypass stages of a strict 
compositional hierarchy. The Viola & Jones (VJ) detector [2] is able to perform 
robust online face detection by directly agglomerating very low-level features 
(rectangle contrasts), without explicitly referring to facial parts. Gist detection from 
low-level spatial frequencies was demonstrated by Oliva and Torralba [8]. Recurrent 
optimization of parts and object constellation is also common in modern detection 
schemes [9]. Although Latent Semantic Analysis (making use of object co-
occurrence information) has been adapted to images [10], the existing state of object 
detection methods is still far from unifying all the sources of visual contextual 
information integrated by the human perceptual system. Tackling the context 
integration problem and achieving robust multiclass object detection is a vital step 
for applications like image-content database indexing and autonomous robot 
navigation. 

We will propose a method termed Mutual Boosting to incorporate contextual 
information for object detection. Section 2 will start by posing the multiclass 
detection problem from labeled images. In Section 3 we characterize the feature sets 
implemented by Mutual Boosting and define an object's contextual neighborhood. 
Section 4 presents the Mutual Boosting framework aimed at integrating contextual 
information and inspired by the recurrent inferences dominating the human 
perceptual system. An application of the Mutual Boosting framework to facial 
component detection is presented in Section 5. We conclude with a discussion on 
the scope and limitations of the proposed framework. 

2  Problem sett ing and basic  notation 

Suppose we wish to detect multiple objects in natural scenes, and that these scenes 
are characterized by certain mutual positions between the composing objects. Could 
we make use of these objects' contextual relations to improve detection? Perceptual 
context might include multiple sources of information: information originating from 
the presence of existing parts, information derived from other objects in the 
perceptual vicinity and finally general visual knowledge on the scene. In order to 
incorporate these various sources of visual contextual information Mutual Boosting 
will treat parts, objects and scenes identically. We will therefore use the term object 
as a general term while referring to any entity in the compositional hierarchy.  

Let M denote the cardinality of the object set we wish to detect in natural scenes. 
Our goal is to optimize detection by exploiting contextual information while 
maintaining detection time comparable to M individual detectors trained without 
such information. We define the goal of the multiclass detection algorithm as 
generating M intensity maps Hm=1,..,M indicating the likelihood of object m appearing 
at different positions in a target image. 



 

We will use the following notation (Figure 2): 

• H0+/H0-: raw image input with/without the trained objects (A1 & A2) 

• Cm[i]: labeled position of instance i of object m in image H0+ 

• Hm: intensity map output indicating the likelihood of object m appearing in 
different positions in the image H0 (B)  
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Figure 2: A1 & A2. Input: position of positive and negative examples of eyes in 
natural images. B. Output: Eye intensity (eyeness) detection map of image H0+ 

3  Feature set  and contextual  window general izat ions 

The VJ method for real-time object-detection included three basic innovations. 
First, they presented the rectangle contrast-features, features that are evaluated 
efficiently, using an integral-image. Second, VJ introduced AdaBoost [1] to object 
detection using rectangle features as weak learners. Finally a cascade method was 
developed to chain a sequence of increasingly complex AdaBoost learners to enable 
rapid filtering of non-relevant sections in the target image. The resulting cascade of 
AdaBoost face detectors achieves a 15 frame per second detection speed, with 90% 
detection rate and 2x10-6 false alarms. This detection speed is currently unmatched. 
In order to maintain efficient detection and in order to benchmark the performance 
of Mutual Boosting we will adopt the rectangle contrast feature framework 
suggested by VJ.  

It should be noted that the grayscale rectangle features could be naturally extended 
to any image channel that preserves the semantics of summation. A diversified 
feature set (including color features, texture features, etc.) might saturate later than 
a homogeneous channel feature set. By making use of features that capture the 
object regularities well, one can improve performance or reduce detection time. 

VJ extract training windows that capture the exact area of the training faces. We 
term this the local window approach. A second approach, in line with our attempt to 
incorporate information from neighboring parts or objects, would be to make use of 
training windows that capture wide regions around the object (Figure 3)1. 
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Figure 3: A local window (VJ) and a contextual window that captures relative 
position information from objects or parts around and within the detected object. 

                                                           
1 Contextual neighborhoods emerge by downscaling larger regions in the original image 
to a PxP resolution window. 



 

The contextual neighborhood approach contributes to detection when the applied 
channels require a wide contextual range as will be demonstrated in the Mutual 
Boosting scheme presented in the following section2. 

4  Mutual  Boost ing 

The AdaBoost algorithm maintains a clear distinction between the boosting level 
and the weak-learner training level. The basic insight guiding the Mutual Boosting 
method reexamines this distinction, stipulating that when multiple objects and parts 
are trained simultaneously using AdaBoost; any object detector might combine the 
previously evolving intermediate detectors to generate new weak learners. In order 
to elaborate this insight it should first be noted that while training a strong learner 
using 100 iterations of AdaBoost (abbreviated AB100) one could calculate an 
intermediate strong learner at each step on the way (AB2 - AB99). To apply this 
observation for our multiclass detection problem we simultaneously train M object 
detectors. At each boosting iteration t the M detectors (ABm

t-1) emerging at the 
previous stage t-1, are used to filter positive and negative3 training images, thus 
producing intermediate m-detection maps Hm

t-1 (likelihood of object m in the 
images4). Next, the Mutual Boosting stage takes place and all the existing Hm

t-1 
maps are used as additional channels out of which new contrast features are 
selected. This process gradually enriches the initial grounded features with 
composite contextual features. The composite features are searched on a PxP wide 
contextual neighborhood region rather than the PxP local window (Figure 3). 

Following a dynamic programming approach in training and detection, Hm=1,..,M 
detection maps are constantly maintained and updated so that the recalculation of 
Hm

t only requires the last chosen weak learner WLmn*
t to be evaluated on channel 

Hn*
t-1 of the training image (Figure 4). This evaluation produces a binary detection 

layer that will be weighted by the AdaBoost weak-learner weighting scheme and 
added to the previous stage map5. 

Although Mutual Boosting examines a larger feature set during training, an iteration 
of Mutual Boosting detection of M objects is as time-consuming as performing an 
AdaBoost detection iteration for M individual objects. The advantage of Mutual 
Boosting emerges from introducing highly informative feature sets that can enhance 
detection or require fewer boosting iterations. While most object detection 
applications extract a local window containing the object information and discard 
the remaining image (including the object positional information). Mutual Boosting 
processes the entire image during training and detection and makes constant use of 
the information characterizing objects’ relative-position in the training images. 

As we have previously stated, the detected objects might be in various levels of a 
compositional hierarchy (e.g. complex objects or parts of other objects). 
Nevertheless, Mutual Boosting provides a similar treatment to objects, parts and 
scenes enabling any compositional structure of the data to naturally emerge. We will 
term any contextual reference that is not directly grounded to the basic features, as a 
cross referencing of objects6. 

                                                           
2 The most efficient size of the contextual neighborhoods might vary, from the immediate 
to the entire image, and therefore should be empirically learned. 
3 Images without target objects (see experimental section below) 
4 Unlike the weak learners, the intermediate strong learners do not apply a threshold 
5 In order to optimize the number of detection map integral image recalculations these 
maps might be updated every k (e.g. 50) iterations rather than at each iteration. 
6 Scenes can be crossed referenced as well if scene labels are available (office/lab etc.). 



 

Input  H0+/0- positive / negative raw images 
  Cm[i] position of instance i of object m=1,..,M in image H0+ 
Initialization initialize boosting-weights of instances i of object m to 1  
  initialize detection maps Hm+

0/Hm-
0 to 0 

 
For  t=1,…,T 
 
     For  m=1,..,M   and   n=0,..,M 
        (A) cutout & downscale local (n=0) or contextual (n>0) windows (WINm) 
                    of instances i of object m (at Cm[i]), from all existing images Hn

t-1 
 
    For  m=1,..,M  
            normalize boosting-weights of object m instances [1] 
        (B1&2) select map Hn*

t-1 and weak learner WLmn* that minimize error on WINm 
            decrease boosting-weights of instances that WLmn* labeled correctly [1] 
        (C) DetectionLayermn* ← WLmn*(Hn*

t-1) 
            calculate αm

t the weak learner contribution factor from the empirical error [1] 
        (D) update m-detection map Hm

t ← Hm
t-1 + αm

t DetectionLayermn * 
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T including WLmn*
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Figure 4: Mutual Boosting Diagram & Pseudo code. Each raw image H0 is analyzed 
by M object detection maps Hm=1,.,M, updated by iterating through four steps: (A) 

cutout & downscale from existing maps Hn=0,..,M
 t-1 a local (n=0) or contextual (n>0) 

PxP window containing a neighborhood of object m (B1&2) select best performing 
map Hn* and weak learner WLmn* that optimize object m detection (C) run WLmn* on 

Hn* map to generate a new binary m-detection layer (D) add m-detection layer to 
existing detection map Hm. [1] Standard AdaBoost stages are not elaborated 

 

To maintain local and global natural scene statistics, negative training examples are 
generated by pairing each image with an image of equal size that does not contain 
the target objects and by centering the local and contextual windows of the positive 
and negative examples on the object positions in the positive images (see Figure 2). 
By using parallel boosting and efficient rectangle contrast features, Mutual Boosting 
is capable of incorporating many information inferences (references in Figure 5): 

• Features could be used to directly detect parts and objects (A & B) 
• Objects could be used to detect other (or identical) objects in the image (C) 
• Parts could be used to detect other (or identical) nearby parts (D & E) 
• Parts could be used to detect objects (F) 
• Objects could be used to detect parts 
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Figure 5: A-E. Emerging features of eyes, mouths and faces (presented on windows 
of raw images for legibility). The windows’ scale is defined by the detected object 
size and by the map mode (local or contextual). C. faces are detected using face 
detection maps HFace, exploiting the fact that faces tend to be horizontally aligned.  

5  Experiments  

In order to test the contribution of the Mutual Boosting process we focused on 
detection of objects in what we term a face-scene (right eye, left eye, nose, mouth 
and face). We chose to perform contextual detection in the face-scene for two main 
reasons. First as detailed in Figure 5, face scenes demonstrate a range of potential 
part and object cross references. Second, faces have been the focus of object 
detection research for many years, thus enabling a systematic result comparison. 
Experiment 1 was aimed at comparing the performance of Mutual Boosting to that 
of naïve independently trained object detectors using local windows. 
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Figure 6: A. Two examples of the CMU/MIT face database. B. Mutual Boosting and 
AdaBoost ROCs on the CMU/MIT face database.  

Face-scene images were downloaded from the web and manually labeled7. Training 
relied on 450 positive and negative examples (~4% of the images used by VJ). 400 
iterations of local window AdaBoost and contextual window Mutual Boosting were 
performed on the same image set. Contextual windows encompassed a region five 
times larger in width and height than the local windows8 (see Figure 3).  

                                                           
7 By following CMU database conventions (R-eye, L-eye, Nose & Mouth positions) we 
derive both the local window position and the relative position of objects in the image 
8 Local windows were created by downscaling objects to 25x25 grids 



 

Test image detection maps emerge from iteratively summing T m-detection layers 
(Mutual Boosting stages C&D). ROC performance on the CMU/MIT face database 
(see sample images in Figure 6A) was assessed using a threshold on position Cm[i] 
that best discriminated the final positive and negative detection maps Hm+/-

T. Figure 
6B demonstrates the superiority of Mutual Boosting to grounded feature AdaBoost. 

Our second experiment was aimed at assessing the performance of Mutual Boosting 
as we change the detected configurations’ variance. Assuming normal distribution 
of face configurations we estimated (from our existing labeled set) the spatial 
covariance between four facial components (noses, mouths and both eyes). We then 
modified the covariance matrix, multiplying it by 0.25, 1 or 4 and generated 100 
artificial configurations by positioning four contrasting rectangles in the estimated 
position of facial components. Although both Mutual Boosting and AdaBoost 
performance degraded as the configuration variance increased, the advantage of 
Mutual Boosting persists both in rigid and in varying configurations9 (Figure 7).  
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Figure 7: A. Artificial face configurations with increasing covariance B. MB and 
AB Equal error rate performance on configurations with varying covariance as a 

function of boosting iterations.  

6  Discussion 

While evaluating the performance of Mutual Boosting it should be emphasized that 
we did not implement the VJ cascade approach; therefore we only attempt to 
demonstrate that the power of a single AdaBoost learner could be augmented by 
Mutual Boosting. The VJ detector is rescaled in order to perform efficient detection 
of objects in multiple scales. For simplicity, scale of neighboring objects and parts 
was assumed to be fixed so that a similar detector-rescaling approach could be 
followed. This assumption holds well for face-scenes, but if neighboring objects 
may vary in scale a single m-detection map will not suffice. However, by 
transforming each m-detection image to an m-detection cube, (having scale as the 
third dimension) multi-scale context detection could be achieved10. The dynamic 
programming characteristic of Mutual Boosting (simply reusing the multiple 
position and scale detections already performed by VJ) will ensure that the running 
time of varying scale context will only be doubled. It should be noted that the face-
scene is highly structured and therefore it is a good candidate for demonstrating 

                                                           
9 In this experiment the resolution of the MB windows (and the number of training 
features) was decreased so that information derived from the higher resolution of the 
parts would be ruled out as an explaining factor for the Mutual Boosting advantage. This 
procedure explains the superior AdaBoost performance in the first boosting iteration. 
10 By using an integral cube, calculating the sum of a cube feature (of any size) requires 8 
access operations (only double than the 4 operations required in the integral image case). 



 

                                                          

Mutual Boosting; however as suggested by Figure 7B Mutual Boosting can handle 
highly varying configurations and the proposed method needs no modification when 
applied to other scenes, like the office scene in Figure 111. Notice that Mutual 
Boosting does not require a-priori knowledge of the compositional structure but 
rather permits structure to naturally emerge in the cross referencing pattern (see 
examples in Figure 5). 

Mutual Boosting could be enhanced by unifying the selection of weak-learners 
rather than selecting an individual weak learner for each object detector. Unified 
selection is aimed at choosing weak learners that maximize the entire object set 
detection rate, thus maximizing feature reuse [11]. This approach is optimal when 
many objects with common characteristics are trained. 

Is Mutual Boosting specific for image object detection? Indeed it requires labeled 
input of multiple objects in a scene supplying a local description of the objects as 
well as information on their contextual mutual positioning. But these criterions are 
shared by other complex "scenes". DNA sequences include multiple objects (Genes) 
in mutual positions, and therefore might be handled by a variant of Mutual 
Boosting. The remarkable success of the VJ method stems from abandoning the use 
of highly custom-tailored complex features in favor of numerous simple ones. 
Mutual Boosting combines parallel boosting, with a similar feature approach to 
efficiently incorporate contextual information. We suggest that achieving wide 
contextual integration is one step towards human-like object detection capabilities. 
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11 MB is currently aimed at detecting objects in office-scenes (Caltech 360° office DB) 


