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Abstract

Pairwise coupling is a popular multi-class classification method that
combines together all pairwise comparisons for each pair of classes. This
paper presents two approaches for obtaining class probabilities. Both
methods can be reduced to linear systems and are easy to implement. We
show conceptually and experimentally that the proposed approaches are
more stable than two existing popular methods: voting and [3].

1 Introduction

The multi-class classification problem refers to assigning each of the observations into one
of k classes. As two-class problems are much easier to solve, many authors propose to use
two-class classifiers for multi-class classification. In this paper we focus on techniques that
provide a multi-class classification solution by combining all pairwise comparisons.

A common way to combine pairwise comparisons is by voting [6, 2]. It constructs a rule
for discriminating between every pair of classes and then selecting the class with the most
winning two-class decisions. Though the voting procedure requires just pairwise decisions,
it only predicts a class label. In many scenarios, however, probability estimates are desired.
As numerous (pairwise) classifiers do provide class probabilities, several authors [12, 11, 3]
have proposed probability estimates by combining the pairwise class probabilities.

Given the observation x and the class label y, we assume that the estimated pairwise class
probabilities rij of µij = p(y = i | y = i or j,x) are available. Here rij are obtained
by some binary classifiers. Then, the goal is to estimate {pi}

k
i=1, where pi = p(y =

i | x), i = 1, . . . , k. We propose to obtain an approximate solution to an identity, and
then select the label with the highest estimated class probability. The existence of the
solution is guaranteed by theory in finite Markov Chains. Motivated by the optimization
formulation of this method, we propose a second approach. Interestingly, it can also be
regarded as an improved version of the coupling approach given by [12]. Both of the
proposed methods can be reduced to solving linear systems and are simple in practical
implementation. Furthermore, from conceptual and experimental points of view, we show
that the two proposed methods are more stable than voting and the method in [3].

We organize the paper as follows. In Section 2, we review two existing methods. Sections
3 and 4 detail the two proposed approaches. Section 5 presents the relationship among the
four methods through their corresponding optimization formulas. In Section 6, we compare



these methods using simulated and real data. The classifiers considered are support vector
machines. Section 7 concludes the paper. Due to space limit, we omit all detailed proofs.
A complete version of this work is available at http://www.csie.ntu.edu.tw/
˜cjlin/papers/svmprob/svmprob.pdf.

2 Review of Two Methods

Let rij be the estimates of µij = pi/(pi + pj). The voting rule [6, 2] is

δV = argmaxi[
∑

j:j 6=i

I{rij>rji}]. (1)

A simple estimate of probabilities can be derived as pv
i = 2

∑

j:j 6=i I{rij>rji}/(k(k − 1)).
The authors of [3] suggest another method to estimate class probabilities, and they claim
that the resulting classification rule can outperform δV in some situations. Their approach
is based on the minimization of the Kullback-Leibler (KL) distance between rij and µij :

l(p) =
∑

i6=j

nijrij log(rij/µij), (2)

where
∑k

i=1
pi = 1, pi > 0, i = 1, . . . , k, and nij is the number of instances in class i or

j. By letting ∇l(p) = 0, a nonlinear system has to be solved. [3] proposes an iterative
procedure to find the minimum of (2). If rij > 0, ∀i 6= j, the existence of a unique global
minimal solution to (2) has been proved in [5] and references therein. Let p

∗ denote this
point. Then the resulting classification rule is

δHT (x) = argmaxi[p
∗
i ].

It is shown in Theorem 1 of [3] that

p∗i > p∗j if and only if p̃i > p̃j , where p̃j =
2
∑

s:s6=j rjs

k(k − 1)
; (3)

that is, the p̃i are in the same order as the p∗i . Therefore, p̃ are sufficient if one only requires
the classification rule. In fact, as pointed out by [3], p̃ can be derived as an approximation
to the identity by replacing pi + pj with 2/k, and µij with rij .

pi =
∑

j:j 6=i

(
pi + pj

k − 1
)(

pi

pi + pj

) =
∑

j:j 6=i

(
pi + pj

k − 1
)µij (4)

3 Our First Approach

Note that δHT is essentially argmaxi[p̃i], and p̃ is an approximate solution to (4). Instead
of replacing pi + pj by 2/k, in this section we propose to solve the system:

pi =
∑

j:j 6=i

(
pi + pj

k − 1
)rij ,∀i, subject to

k
∑

i=1

pi = 1, pi ≥ 0,∀i. (5)

Let p̄ denote the solution to (5). Then the resulting decision rule is

δ1 = argmaxi[p̄i].

As δHT relies on pi + pj ≈ k/2, in Section 6.1 we use two examples to illustrate possible
problems with this rule.



To solve (5), we rewrite it as

Qp = p,
k

∑

i=1

pi = 1, pi ≥ 0,∀i, where Qij =

{

rij/(k − 1) if i 6= j,
∑

s:s6=i ris/(k − 1) if i = j.
(6)

Observe that
∑k

j=1
Qij = 1 for i = 1, . . . , k and 0 ≤ Qij ≤ 1 for i, j = 1, . . . , k, so there

exists a finite Markov Chain whose transition matrix is Q. Moreover, if rij > 0 for all
i 6= j, then Qij > 0, which implies this Markov Chain is irreducible and aperiodic. These
conditions guarantee the existence of a unique stationary probability and all states being
positive recurrent. Hence, we have the following theorem:

Theorem 1 If rij > 0, i 6= j, then (6) has a unique solution p with 0 < pi < 1, ∀i.

With Theorem 1 and some further analyses, if we remove the constraint pi ≥ 0,∀i, the
linear system with k + 1 equations still has the same unique solution. Furthermore, if any
one of the k equalities Qp = p is removed, we have a system with k variables and k
equalities, which, again, has the same single solution. Thus, (6) can be solved by Gaussian
elimination. On the other hand, as the stationary solution of a Markov Chain can be derived
by the limit of the n-step transition probability matrix Qn, we can solve p by repeatedly
multiplying QT with any initial vector.

Now we reexamine this method to gain more insight. The following arguments show that
the solution to (5) is a global minimum of a meaningful optimization problem. To begin,
we express (5) as

∑

j:j 6=i rjipi −
∑

j:j 6=i rijpj = 0, i = 1, . . . , k, using the property that
rij + rji = 1, ∀i 6= j. Then the solution to (5) is in fact the global minimum of the
following problem:

min
p

k
∑

i=1

(
∑

j:j 6=i

rjipi −
∑

j:j 6=i

rijpj)
2 subject to

k
∑

i=1

pi = 1, pi ≥ 0,∀i. (7)

Since the object function is always nonnegative, and it attains zero under (5) and (6).

4 Our Second Approach

Note that both approaches in Sections 2 and 3 involve solving optimization problems using
the relations like pi/(pi +pj) ≈ rij or

∑

j:j 6=i rjipi ≈
∑

j:j 6=i rijpj . Motivated by (7), we
suggest another optimization formulation as follows:

min
p

1

2

k
∑

i=1

∑

j:j 6=i

(rjipi − rijpj)
2 subject to

k
∑

i=1

pi = 1, pi ≥ 0,∀i. (8)

In related work, [12] proposes to solve a linear system consisting of
∑k

i=1
pi = 1 and

any k − 1 equations of the form rjipi = rijpj . However, pointed out in [11], the results
of [12] strongly depends on the selection of k − 1 equations. In fact, as (8) considers all
rijpj − rjipi, not just k − 1 of them, it can be viewed as an improved version of [12].

Let p† denote the corresponding solution. We then define the classification rule as

δ2 = argmaxi[p
†
i ].

Since (7) has a unique solution, which can be obtained by solving a simple linear system, it
is desired to see whether the minimization problem (8) has these nice properties. In the rest
of the section, we show that this is true. The following theorem shows that the nonnegative
constraints in (8) are redundant.



Theorem 2 Problem (8) is equivalent to a simplification without conditions pi ≥ 0,∀i.

Note that we can rewrite the objective function of (8) as

min
p

=
1

2
p

T Qp, where Qij =

{

∑

s:s6=i r2
si if i = j,

rjirij if i 6= j.
(9)

From here we can show that Q is positive semi-definite. Therefore, without constraints
pi ≥ 0,∀i, (9) is a linear-constrained convex quadratic programming problem. Conse-
quently, a point p is a global minimum if and only if it satisfies the KKT optimality condi-
tion: There is a scalar b such that

[

Q e

e
T 0

] [

p

b

]

=

[

0
1

]

. (10)

Here e is the vector of all ones and b is the Lagrangian multiplier of the equality constraint
∑k

i=1
pi = 1. Thus, the solution of (8) can be obtained by solving the simple linear system

(10). The existence of a unique solution is guaranteed by the invertibility of the matrix
of (10). Moreover, if Q is positive definite(PD), this matrix is invertible. The following
theorem shows that Q is PD under quite general conditions.

Theorem 3 If for any i = 1, . . . , k, there are s 6= i and j 6= i such that rsirsj

ris
6=

rjirjs

rij
,

then Q is positive definite.

In addition to direct methods, next we propose a simple iterative method for solving (10):

Algorithm 1

1. Start with some initial pi ≥ 0,∀i and
∑k

i=1
pi = 1.

2. Repeat (t = 1, . . . , k, 1, . . .)

pt ←
1

Qtt

[−
∑

j:j 6=t

Qtjpj + p
T Qp] (11)

normalize p (12)

until (10) is satisfied.

Theorem 4 If rsj > 0,∀s 6= j, and {pi}∞i=1 is the sequence generated by Algorithm 1,
any convergent sub-sequence goes to a global minimum of (8).

As Theorem 3 indicates that in general Q is positive definite, the sequence {pi}∞i=1 from
Algorithm 1 usually globally converges to the unique minimum of (8).

5 Relations Among Four Methods

The four decision rules δHT , δ1, δ2, and δV can be written as argmaxi[pi], where p is
derived by the following four optimization formulations under the constants

∑k
i=1

pi = 1



and pi ≥ 0,∀i:

δHT : min
p

k
∑

i=1

[

k
∑

j:j 6=i

(rij

1

k
−

1

2
pi)]

2, (13)

δ1 : min
p

k
∑

i=1

[

k
∑

j:j 6=i

(rijpj − rjipi)]
2, (14)

δ2 : min
p

k
∑

i=1

k
∑

j:j 6=i

(rijpj − rjipi)
2, (15)

δV : min
p

k
∑

i=1

k
∑

j:j 6=i

(I{rij>rji}pj − I{rji>rij}pi)
2. (16)

Note that (13) can be easily verified, and that (14) and (15) have been explained in Sections
3 and 4. For (16), its solution is

pi =
c

∑

j:j 6=i I{rji>rij}
,

where c is the normalizing constant;∗ and therefore, argmaxi[pi] is the same as (1). Clearly,
(13) can be obtained from (14) by letting pj ≈ 1/k,∀j and rji ≈ 1/2, ∀i, j. Such approx-
imations ignore the differences between pi. Similarly, (16) is from (15) by taking the
extreme values of rij : 0 or 1. As a result, (16) may enlarge the differences between pi.
Next, compared with (15), (14) may tend to underestimate the differences between the pi’s.
The reason is that (14) allows the difference between rijpj and rjipi to get canceled first.
Thus, conceptually, (13) and (16) are more extreme – the former tends to underestimate
the differences between pi’s, while the latter overestimate them. These arguments will be
supported by simulated and real data in the next section.

6 Experiments

6.1 Simple Simulated Examples

[3] designs a simple experiment in which all pi’s are fairly close and their method δHT

outperforms the voting strategy δV . We conduct this experiment first to assess the per-
formance of our proposed methods. As in [3], we define class probabilities p1 = 1.5/k,
pj = (1− p1)/(k − 1), j = 2, . . . , k, and then set

rij =
pi

pi + pj

+ 0.1zij if i > j, (17)

rji = 1− rij if j > i, (18)

where zij are standard normal variates. Since rij are required to be within (0,1), we truncate
rij at ε below and 1 − ε above, with ε = 0.00001. In this example, class 1 has the highest
probability and hence is the correct class.

Figure 1 shows accuracy rates for each of the four methods when k = 3, 5, 8, 10, 12, 15, 20.
The accuracy rates are averaged over 1,000 replicates. Note that in this experiment all
classes are quite competitive, so, when using δV , sometimes the highest vote occurs at two

∗For I to be well defined, we consider rij 6= rji, which is generally true. In addition, if there is
an i for which

P

j:j 6=i
I{rji>rij} = 0, an optimal solution of (16) is pi = 1, and pj = 0, ∀j 6= i.

The resulting decision is the same as that of (1).
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(a) balanced pi (b) unbalanced pi (c) highly unbalanced pi

Figure 1: Accuracy of predicting the true class by the methods δHT (solid line, cross
marked), δV (dash line, square marked), δ1 (dotted line, circle marked), and δ2 (dashed
line, asterisk marked) from simulated class probability pi, i = 1, 2 · · · k.

or more different classes. We handle this problem by randomly selecting one class from
the ties. This partly explains why δV performs poor. Another explanation is that the rij

here are all close to 1/2, but (16) uses 1 or 0 instead; therefore, the solution may be severely
biased. Besides δV , the other three rules have done very well in this example.

Since δHT relies on the approximation pi + pj ≈ k/2, this rule may suffer some losses
if the class probabilities are not highly balanced. To examine this point, we consider the
following two sets of class probabilities:

(1) We let k1 = k/2 if k is even, and (k + 1)/2 if k is odd; then we define p1 =
0.95×1.5/k1, pi = (0.95−p1)/(k1−1) for i = 2, . . . , k1, and pi = 0.05/(k−k1)
for i = k1 + 1, . . . , k.

(2) If k = 3, we define p1 = 0.95 × 1.5/2, p2 = 0.95 − p1, and p3 = 0.05. If
k > 3, we define p1 = 0.475, p2 = p3 = 0.475/2, and pi = 0.05/(k − 3) for
i = 4, . . . , k.

After setting pi, we define the pairwise comparisons rij as in (17)-(18). Both experiments
are repeated for 1,000 times. The accuracy rates are shown in Figures 1(b) and 1(c). In
both scenarios, pi are not balanced. As expected, δHT is quite sensitive to the imbalance of
pi. The situation is much worse in Figure 1(c) because the approximation pi + pj ≈ k/2 is
more seriously violated, especially when k is large.

In summary, δ1 and δ2 are less sensitive to pi, and their overall performance are fairly
stable. All features observed here agree with our analysis in Section 5.

6.2 Real Data

In this section we present experimental results on several multi-class problems: segment,
satimage, and letter from the Statlog collection [9], USPS [4], and MNIST [7]. All data
sets are available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
t. Their numbers of classes are 7, 6, 26, 10, and 10, respectively. From thousands of
instances in each data, we select 300 and 500 as our training and testing sets.

We consider support vector machines (SVM) with RBF kernel e−γ‖xi−xj‖
2

as the binary
classifier. The regularization parameter C and the kernel parameter γ are selected by cross-
validation. To begin, for each training set, a five-fold cross-validation is conducted on
the following points of (C, γ): [2−5, 2−3, . . . , 215] × [2−5, 2−3, . . . , 215]. This is done by
modifying LIBSVM [1], a library for SVM. At each (C, γ), sequentially four folds are



Table 1: Testing errors (in percentage) by four methods: Each row reports the testing errors
based on a pair of the training and testing sets. The mean and std (standard deviation) are
from five 5-fold cross-validation procedures to select the best (C, γ).

Dataset k δHT δ1 δ2 δV

mean std mean std mean std mean std

satimage 6

14.080 1.306 14.600 0.938 14.760 0.784 15.400 0.219
12.960 0.320 13.400 0.400 13.400 0.400 13.360 0.080
14.520 0.968 14.760 1.637 13.880 0.392 14.080 0.240
12.400 0.000 12.200 0.000 12.640 0.294 12.680 1.114
16.160 0.294 16.400 0.379 16.120 0.299 16.160 0.344

segment 7

9.960 0.480 9.480 0.240 9.000 0.400 8.880 0.271
6.040 0.528 6.280 0.299 6.200 0.456 6.760 0.445
6.600 0.000 6.680 0.349 6.920 0.271 7.160 0.196
5.520 0.466 5.200 0.420 5.400 0.580 5.480 0.588
7.440 0.625 8.160 0.637 8.040 0.408 7.840 0.344

USPS 10

14.840 0.388 13.520 0.560 12.760 0.233 12.520 0.160
12.080 0.560 11.440 0.625 11.600 1.081 11.440 0.991
10.640 0.933 10.000 0.657 9.920 0.483 10.320 0.744
12.320 0.845 11.960 1.031 11.560 0.784 11.840 1.248
13.400 0.310 12.640 0.080 12.920 0.299 12.520 0.917

MNIST 10

17.400 0.000 16.560 0.080 15.760 0.196 15.960 0.463
15.200 0.400 14.600 0.000 13.720 0.588 12.360 0.196
17.320 1.608 14.280 0.560 13.400 0.657 13.760 0.794
14.720 0.449 14.160 0.196 13.360 0.686 13.520 0.325
12.560 0.294 12.600 0.000 13.080 0.560 12.440 0.233

letter 26

39.880 1.412 37.160 1.106 34.560 2.144 33.480 0.325
41.640 0.463 39.400 0.769 35.920 1.389 33.440 1.061
41.320 1.700 38.920 0.854 35.800 1.453 35.000 1.066
35.240 1.439 32.920 1.121 29.240 1.335 27.400 1.117
43.240 0.637 40.360 1.472 36.960 1.741 34.520 1.001

used as the training set while one fold as the validation set. The training of the four folds
consists of k(k − 1)/2 binary SVMs. For the binary SVM of the ith and the jth classes,
using decision values f̂ of training data, we employ an improved implementation [8] of
Platt’s posterior probabilities [10] to estimate rij :

rij = P (i | i or j, x) =
1

1 + eAf̂+B
, (19)

where A and B are estimated by minimizing the negative log-likelihood function.†

Then, for each validation instance , we apply the four methods to obtain classification
decisions. The error of the five validation sets is thus the cross-validation error at (C, γ).

After the cross-validation is done, each rule obtains its best (C, γ).‡ Using these param-
eters, we train the whole training set to obtain the final model. Next, the same as (19),
the decision values from the training data are employed to find rij . Then, testing data are
tested using each of the four rules.

Due to the randomness of separating training data into five folds for finding the best (C, γ),
we repeat the five-fold cross-validation five times and obtain the mean and standard devi-
ation of the testing error. Moreover, as the selection of 300 and 500 training and testing
instances from a larger dataset is also random, we generate five of such pairs. In Table 1,
each row reports the testing error based on a pair of the training and testing sets. The re-
sults show that when the number of classes k is small, the four methods perform similarly;
however, for problems with larger k, δHT is less competitive. In particular, for problem
letter which has 26 classes, δ2 or δV outperforms δHT by at least 5%. It seems that for

†[10] suggests to use f̂ from the validation instead of the training. However, this requires a further
cross-validation on the four-fold data. For simplicity, we directly use f̂ from the training.

‡If more than one parameter sets return the smallest cross-validation error, we simply choose one
with the smallest C.



problems here, their characteristics are closer to the setting of Figure 1(c), rather than that
of Figure 1(a). All these results agree with the previous findings in Sections 5 and 6.1. Note
that in Table 1, some standard deviations are zero. That means the best (C, γ) by different
cross-validations are all the same. Overall, the variation on parameter selection due to the
randomness of cross-validation is not large.

7 Discussions and Conclusions

As the minimization of the KL distance is a well known criterion, some may wonder why
the performance of δHT is not quite satisfactory in some of the examples. One possi-
ble explanation is that here KL distance is derived under the assumptions that nijrij ∼
Bin(nij , µij) and rij are independent; however, as pointed out in [3], neither of the as-
sumptions holds in the classification problem.

In conclusion, we have provided two methods which are shown to be more stable than both
δHT and δV . In addition, the two proposed approaches require only solutions of linear
systems instead of a nonlinear one in [3].

The authors thank S. Sathiya Keerthi for helpful comments.
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