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Abstract

We describe a method for computing provably exact maximum a poste-
riori (MAP) estimates for a subclass of problems on graphs with cycles.
The basic idea is to represent the original problem on the graph with cy-
cles as a convex combination of tree-structured problems. A convexity
argument then guarantees that the optimal value of the original problem
(i.e., the log probability of the MAP assignment) is upper bounded by the
combined optimal values of the tree problems. We prove that this upper
bound is met with equality if and only if the tree problems share an opti-
mal configuration in common. An important implication is that any such
shared configuration must also be the MAP configuration for the original
problem. Next we develop a tree-reweighted max-product algorithm for
attempting to find convex combinations of tree-structured problems that
share a common optimum. We give necessary and sufficient conditions
for a fixed point to yield the exact MAP estimate. An attractive feature
of our analysis is that it generalizes naturally to convex combinations of
hypertree-structured distributions.

1 Introduction

Integer programming problems arise in various fields, including machine learning, statis-
tical physics, communication theory, and error-correcting coding. In many cases, such
problems can be formulated in terms of undirected graphical models [e.g., 1], in which the
cost function corresponds to a graph-structured probability distribution, and the problem of
interest is to find the maximum a posteriori (MAP) configuration.

In previous work [2], we have shown how to use convex combinations of tree-structured
distributions in order to upper bound the log partition function. In this paper, we apply
similar ideas to upper bound the log probability of the MAP configuration. As we show,
this upper bound is met with equality whenever there is a configuration that is optimal
for all trees, in which case it must also be a MAP configuration for the original problem.
The work described here also makes connections with the max-product algorithm [e.g.,
3, 4, 5], a well-known method for attempting to compute the MAP configuration, one
which is exact for trees but approximate for graphs with cycles. In the context of coding
problems, Frey and Koetter [4] developed an attenuated version of max-product, which is
guaranteed to find the MAP codeword if it converges. One contribution of this paper is
to develop a tree-reweighted max-product algorithm that attempts to find a collection of



tree-structured problems that share a common optimum. This algorithm, though similar to
both the standard and attenuated max-product updates [4], differs in key ways.

The remainder of this paper is organized as follows. The next two subsections provide
background on exponential families and convex combinations. In Section 2, we introduce
the basic form of the upper bounds on the log probability of the MAP assignment, and then
develop necessary and sufficient conditions for it to tight (i.e., met with equality). In Sec-
tion 3, we develop tree-reweighted max-product algorithms for attempting to find a convex
combination of trees that yields a tight bound. We prove that for positive compatibility
functions, the algorithm always has at least one fixed point; moreover, if a key uniqueness
condition is satisfied, the configuration specified by a fixed point must be MAP optimal.
We also illustrate how the algorithm, like the standard max-product algorithm [5], can fail if
the uniqueness condition is not satisfied. We conclude in Section 4 with pointers to related
work, and extensions of the current work.

1.1 Notation and set-up

Consider an undirected (simple) graph ���������
	�� . For each vertex 
���� , let ��� be a
random variable taking values in the discrete space ����� ��� ������������� �!�#"$� � . We use the
letters %��'& to denote particular elements of the sample space � � . The overall random vector( � � � �*) 
+�!� � takes values in the Cartesian product space �-,.�/�103254�4�462�� , , where7 � ) � ) . We make use of the following exponential representation of a graph-structured
distribution 89� ( � . For some index set : , we let ;.� �=<�> )@? �!: � denote a collection of
potential functions defined on the cliques of � , and let A!� � A > )B? �C: � be a vector of
real-valued weights on these potential functions. The exponential family determined by ;
is the collection of distributions 8D� (FE A���GIHKJ@L�M#N >PO=Q A >R<S> � ( ��T .

In a minimal exponential representation, the functions
�=<�> � are affinely independent. For

example, one minimal representation of a binary process (i.e., �U�1� ��� ��� � for all 
 ) using
pairwise potential functions is the usual Ising model, in which the collection of potentials;V� � �W� ) 
X�Y� �[Z � �W���R\ ) �]
^�
_ �`�a	 � . In this case, the index set is given by:b�c�YZd	 . In most of our analysis, we use an overcomplete representation, in which
there are linear dependencies among the potentials

�=<�> � . In particular, we use indicator
functions as potentials:< � e f �g� � �h� i � e f �g� � ���h
j�`� E %k�!� � (1a)< �l\�e f'm �n� � �
� \ �h� i � e f �g� � �oi \�e m �g� \ �K����
��
_ �p�q	 E �r%��'&P�1�`� � 2`� \ (1b)

where the indicator function i � e f �g� � � is equal to one if � � �$% , and zero otherwise. In this
case, the index set : consists of the union of :�������� � ��
 E %s� ) 
t�u� E %`�v��� � with the
edge indices :���	5��� � ��
�_ E %s&P� ) �]
�� _ �#�!	 E �r%��6&P�p�!�p�w2`�x\ � .

Of interest to us is the maximum a posteriori configuration y(�zp{S| �I}^~
���t}�J�� O��x� 8D� (FE A�� .
Equivalently, we can express this MAP configuration as the solution of the integer program� �gA����I�k}�J � O�� �-� � (FE A�� , where� � (FE A��h� �gAR�B;�� ( � ������ O�� � f A�� e f < � e f��g�W����� �� �'� \g� O^� � f
� m A��l\�e f'm < �l\�e f'mR�n�W�=�
�R\ � (2)

Note that the function
� �nA�� is the maximum of a collection of linear functions, and hence

is convex [6] as a function of A , which is a key property for our subsequent development.

1.2 Convex combinations of trees

Let yA be a particular parameter vector for which we are interested in computing
� � yA�� . In

this section, we show how to derive upper bounds via the convexity of
�

. Let � denote



a particular spanning tree of � , and let � ���U�n�j� denote the set of all spanning trees.
For each spanning tree � ��� , let AR����� be an exponential parameter vector of the same
dimension as A that respects the structure of � . To be explicit, if � is defined by an edge
set 	 �������Y	 , then AR�n� � must have zeros in all elements corresponding to edges not in	 ����� . However, given an edge � belonging to two trees � 0 and ��� , the quantity A	���n� 0 �
can be different than A
���n����� . For compactness, let ��
 � � AR�n�5� ) � ��� � denote the
full collection, where the notation AR�n� � specifies those subelements of � corresponding to
spanning tree � .

In order to define a convex combination, we require a probability distribution �� over the
set of spanning trees — that is, a vector �� 
 � ��� �n���K� � ��� ) � ������� � � such thatN�� O
� � �n�5�`� � . For any distribution �� , we define its support, denoted by ���PLPL3���� � ,
to be the set of trees to which it assigns strictly positive probability. In the sequel, we will
also be interested in the probability

� ����� ~�� � �5�!� � that a given edge ��� 	 appears in
a spanning tree � chosen randomly under �� . We let �"! � �#� � ) �+�!	 � represent a vector
of edge appearance probabilities, which must belong to the spanning tree polytope [see 2].
We say that a distribution �� (or the vector �$! ) is valid if

� �&% �
for every edge �j�!	 .

A convex combination of exponential parameter vectors is defined via the weighted sumN�� O
� � �n�5�oAR�n�t� , which we denote compactly as '&� &( AR�n� �*) . Of particular importance are
collections of exponential parameters � for which there exists a convex combination that
is equal to yA . Accordingly, we define the set + � yA��,
 � M �-� E �� ��.. '&� "( AR�����*)�� yA T . For any

valid distribution �� , it can be seen that there exist pairs �*� E �� �p��+ � yAs� .
Example 1 (Single cycle). To illustrate these definitions, consider a binary distribution
( �#�w� ��� ��� � for all nodes 
 �d� ) defined by a single cycle on 4 nodes. Consider a target
distribution in the minimal Ising form 89� (FE yA��`� H�JsL � � 0 �/�j�.�/���/0j�.�/0��21j�.�21�� 0 "3 � yAs� � ; otherwise stated, the target distribution is specified by the minimal parameter yAY�( �d�u�d� �u�d�u�4) , where the zeros represent the fact that yA��`� �

for all 
u�a� . The
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Figure 1. A convex combination of four distributions ACBEDGFIH
BKJMLONPN , each defined by a span-
ning tree J�L , is used to approximate the target distribution AQBEDRF�SHTN on the single-cycle graph.

four possible spanning trees �v� � �2U )WV �Y�^���������YX � on a single cycle on four nodes are
illustrated in Figure 1. We define a set of associated exponential parameters �Y� � AR�n� U � �
as follows:

AR�n� 0 � � X Z ( � � �/� �.�.� � )
AR�n���=� � X Z ( � � �/� �.� � �[)

AR�n��0=�h� X Z ( �.�.� � � � �/�4)
AR�n�\1��h� X Z ( �.�.� �/� � �/�4)

Finally, we choose
� �n��U ���b�W]WX for all ��U1�^� . With this uniform distribution over trees,

we have
� �1� Z

]_X for each edge, and '"� `( AB�n���P)S� yA , so that �-� E �� �p�a+ � yA�� .



2 Optimal upper bounds

With the set-up of the previous section, the basic form of the upper bounds follows by
applying Jensen’s inequality [6]. In particular, for any pair �-� E �� �t� + � yAs� , we have the
upper bound

� � yA�� � '"� "( � �gAB�n���
�*) . The goal of this section is to examine this bound, and
understand when it is met with equality. In more explicit terms, the upper bound can be
written as: � � yAs� � � �

� �n� � � �gAR����� �v� � �
� ���5�*�k}�J� O�� � �nAR�n� ���B;*� ( � � (3)

Now suppose that there exists an y( � �k, that attains the maximum defining
� �nAR�n� � � for

each tree � � �Y�PLRLD���� � . In this case, it is clear that the bound (3) is met with equality. An
important implication is that the configuration y( also attains the maximum defining

� � yA�� ,
so that it is an optimal solution to the original problem.

In fact, as we show below, the converse to this statement also holds. More formally, for any
exponential parameter vector AR�n� � , let �`���*�nAR�n� � � be the collection of configurations (
that attain the maximum defining

� �gAR����� � , defined as follows:

�`�����nAR�n�t� � � � ( �!� , ) �nAR�n� ���B;�� (�� �
� � �gAB�n���K�B;*� ( �
�	��
�~k}
��� (�� � � , � (4)

With this notation, the critical property is that the intersection �`���+�-�*� 
 �� � �`�����nAR�n� � � of configurations optimal for all tree-structured problems is non-empty.
We thus have the following result:

Proposition 1 (Tightness of bound). The bound of equation (3) is tight if and only if there
exists a configuration y( � �k, that for each � � ���PLPL3���� � achieves the maximum defining� �gAR����� � . In other words, y( ���`���*�*�*� .
Proof. Consider some pair �-� E �� ���^+ � yA�� . Let y( be a configuration that attains the max-
imum defining

� � yA�� . We write the difference of the RHS and the LHS of equation (3) as
follows:� � � � �

� ����� � �gAB�n���
���*" � � yAs� � � � �
� �n��� � �nAR�n� � ���*"$� yAR�B;��gy( �
�

� � �
� �n� ��� � �gAR�����
� " �nAR�n� ���B;��ny( � ���

Now for each � �����PLPL3���� � , the term
� �gAR����� �W"u�gAB�n�t���B;���y( � � is non-negative, and equal

to zero only when y( belongs to �`���*�gAB�n�t� � . Therefore, the bound is met with equality if
and only if y( achieves the maximum defining

� �gAR����� � for all trees � � ���PLPL3���� � .
Proposition 1 motivates the following strategy: given a spanning tree distribution �� , find
a collection of exponential parameters ���.� � A��^�n� � � such that the following holds:
(a) Admissibility: The pair �*��� E �� � satisfies N � � �n���oA��^�n���#� yA . (b) Mutual agreement:
The intersection

� � �`���*�gA��^�����
� of tree-optimal configurations is non-empty.

If (for a fixed �� ) we are able to find a collection � � satisfying these two proper-
ties, then Proposition 1 guarantees that all configurations in the (non-empty) intersection� � �`�����nA����n� � � achieve the maximum defining

� � yA�� . As discussed above, assuming that�� assigns strictly positive probability to every edge in the graph, satisfying the admissibil-
ity condition is not difficult. It is the second condition of mutual optimality on all trees that
poses the challenge.



3 Mutual agreement via equal max-marginals

We now develop an algorithm that attempts to find, for a given spanning tree distribution �� ,
a collection ����� � A��^�n��� � satisfying both of these properties. Interestingly, this algorithm
is related to the ordinary max-product algorithm [3, 5], but differs in several key ways.
While this algorithm can be formulated in terms of reparameterization [e.g., 5], here we
present a set of message-passing updates.

3.1 Max-marginals

The foundation of our development is the fact [1] that any tree-structured distribution8D� (FE AR�����
� can be factored in terms of its max-marginals. In particular, for each node
+�!� , the corresponding single node max-marginal is defined as follows:� �=�g�W��� � �k}�J� ���������	�
�� 	�
 89� ( � E AB�n���
� (5)

In words, for each �S�w� �#� , � �=�n�W�K� is the maximum probability over the subset of configu-
rations ( � with element � � � fixed to �S� . For each edge ��
�� _ �#�!	 , the pairwise max-marginal
is defined analogously as

� �l\ �g� � �
� \ ���$�k}�J � � � � � � � 	 � � �� � 
 � � 	 � � � � 
 89� ( � E AR�����
� . With these
definitions, the max-marginal tree factorization [1] is given by:

89� (FE AR�n�t� � G �
� O��

� �=�n�W��� �
� �'� \g� O^� � � �

� �l\ �n� � �
� \ �� �=�n�W�K� � \��n�R\ � (6)

One interpretation of the ordinary max-product algorithm for trees, as shown in our related
work [5], is as computing this alternative representation.

Suppose moreover that for each node 
j�!� , the following uniqueness condition holds:
Uniqueness Condition: For each 
+�!� , the max-marginal

� � has a unique optimum ���� .
In this case, the vector ( ��� � � �� ) 
+� � � is the MAP configuration for the tree-structured
distribution [see 5].

3.2 Tree-reweighted max-product

The tree-reweighted max-product method is a message-passing algorithm, with fixed points
that specify a collection of tree exponential parameters ���t� � A�������� � satisfying the ad-
missibility condition. The defining feature of ��� is that the associated tree distributions8D� (FE A������5� � all share a common set � ��� � � �� � � ��l\ � of max-marginals. In particular, for
a given tree � with edge set 	 ���5� , the distribution 8D� (FE A ���n�5�
� is specified compactly by
the subcollection � � ��� ����
 � � � �� ) 
+�!� �xZ � � ��l\ ) ��
�� _ �p�`	 ����� � as follows:

ACBEDGF*H��TBKJ"NPN��aA�� BEDGF���� N�� �! #"$�%'&)( �$ B+* $ N ", $�- .+/�%'0 , � /
( �$�. B+* $21 * . N

( �$ B+* $ N ( �. B+* . N
(7)

where 3 is a constant1 independent of ( . As long as � � satisfies the Uniqueness Condition,
the configuration ( � � � � �� ) 
��b� � must be the MAP configuration for each tree-
structured distribution 8D� (FE A��^�n� � � . This mutual agreement on trees, in conjunction with
the admissibility of � � , implies that ( � is also the MAP configuration for 8D� (FE yA�� .
For each valid � ! , there exists a tree-reweighted max-product algorithm designed to find
the requisite set � � of max-marginals via a sequence of message-passing operations. For
each edge ��
��
_ �!�Y	 , let 4v\n�=�n�W�K� be the message passed from node _ to node 
 . It is
a vector of length �!� , with one element for each state %/�Y��� . We use

< ���g�S� E yA�� as a

1We use this notation throughout the paper, where the value of  may change from line to line.



shorthand for N f yA�� e f < � e f��g�S�K� , with the quantity
< � \K�g�W��� �R\ E yA��l\o� similarly defined. We use

the messages � � � 4X�l\ � to specify a set of functions �a� � � ��� � �l\ � as follows:

( $ B+* $ N � �������	� $ B+* $ F SH $ N�
 "��%�
 , $ / ��� � $ B+* $ N	����� 	 (8a)

( $�. B+* $ 1 * . N � � $�. B+* $ 1 * . FYSHTN � ��%�
 , $ /�� . � � ��$ B+* $ N � ��� 	��� . $ B+* $ N	� ,���� � 	 � /
� ��%�
 , . /���$ � � � . B+* . N � ��� ���� $�. B+* . N	� ,���� � � 	 / (8b)

where  �l\K�g�S�=� �B\ E yA����IHKJ@L ! 0" 	 � < � \K�g�W��� �R\ E yA��l\o�3� < �n�W� E yA����3� yA=\ < �g�B\ E yA=\o��# .

For each tree � , the subcollection � � � �5� can be used to define a tree-structured distri-
bution 8 � � (FE ��� , in a manner analogous to equation (7). By expanding the expectation'�� &( � 
���8 � � (FE �5�*) and making use of the definitions of

� �� and
� ��l\ , we can prove the fol-

lowing:
Lemma 1 (Admissibility). Given any collection

� � � � � �l\ � defined by a set of messages �
as in equations (8a) and (8b), the convex combination N � � ��������
^�38 � � (FE �5� is equivalent

to ��
^��89� (FE yAs� up to an additive constant.

We now need to ensure that � � � � � � � �l\ � are a consistent set of max-marginals for
each tree-distribution 8 � � (FE �5� . It is sufficient [1, 5] to impose, for each edge ��
�� _ � , the
edgewise consistency condition �k}�J � �� O�� � � �l\��n�W�=�
� �\ � � 3 � �=�g�W��� . In order to enforce this
condition, we update the messages in the following manner:

Algorithm 1 (Tree reweighted max-product).
1. Initialize the messages �%$w� � 4&$�l\ � with arbitrary positive real numbers.

2. For iterations '`� � ������(P������� , update the messages as follows:�*),+ �. $ B+* $ N��.-0/1�2 �� %�3 ��4 �����65879 $�. � $�. B+* $ 1 *;: . F SH $ . N=<>� . B+*;: . F SH . N@? � ��%�
 , .+/�� $ ��� )� . B+* : . N	� � � ���� )$�. B+* : . N	� ,���� � � 	 / A (9)

Using the definitions of
� �� and

� ��l\ , as well as the message update equation (9), the follow-
ing result can be proved:
Lemma 2 (Edgewise consistency). Let � � be a fixed point of the message update equa-
tion (9), and let � �j� � � �� � � ��l\ � be defined via � � as in equations (8a) and (8b) respec-
tively. Then the edgewise consistency condition is satisfied.

The message update equation (9) is similar to the standard max-product algorithm [3, 5].
Indeed, if � is actually a tree, then we must have

� �l\ � � for every edge ��
�� _ � � 	 ,
in which case equation (9) is precisely equivalent to the ordinary max-product update.
However, if � has cycles, then it is impossible to have

� �l\p� � for every edge �]
^�
_ �w��	 ,
so that the updates in equation (9) differ from ordinary max-product in some key ways.
First of all, the weight yA��l\ on the potential function

< �l\ is scaled by the (inverse of the) edge
appearance probability �W] � �l\^� � . Secondly, for each neighbor B!�>C��g_ ��D�
 , the incoming
message 4FE \ is scaled by the corresponding edge appearance probability

� E \ � � . Third
of all, in sharp contrast to standard [3] and attenuated [4] max-product updates, the update
of message 4v\n� — that is, from _ to 
 along edge ��
�� _ � — depends on the reverse direction
message 4��l\ from 
 to _ along the same edge. Despite these differences, the messages
can be updated synchronously as in ordinary max-product. It also possible to perform
reparameterization updates over spanning trees, analogous to but distinct from those for
ordinary max-product [5]. Such tree-based updates can be terminated once the trees agree
on a common configuration, which may happen prior to message convergence [7].



3.3 Analysis of fixed points

In related work [5], we established the existence of fixed points for the ordinary max-
product algorithm for positive compatibility functions on an arbitrary graph. The same
proof can be adapted to show that the tree-reweighted max-product algorithm also has at
least one fixed point � � . Any such fixed point � � defines pseudo-max-marginals � � via
equations (8a) and (8b), which (by design of the algorithm) have the following property:

Theorem 1 (Exact MAP). If � � satisfies the Uniqueness Condition, then the configuration( � with elements � �� ��}^~
�F�k}�J � � 	 O�� 	 � �� �n� � � � is a MAP configuration for 89� (FE yA�� .
Proof. For each spanning tree � �a�����
	 �n���
� , the fixed point � � defines a tree-structured
distribution 89� (FE A������5� � via equation (7). By Lemma 2, the elements of � � are edgewise
consistent. By the equivalence of edgewise and global consistency for trees [1], the subcol-
lection � � � � � � � � � �� ) 
+�!� �xZ � � �� \ ) �]
^�
_ �#�!	 �n�5� � are exact max-marginals for the
tree-structured distribution 8D� (FE A ������� � . As a consequence, the configuration ( � must be-
long to �`���*�gA����n�5�
� for each tree � , so that mutual agreement is satisfied. By Lemma 1,
the convex combination '&� "( ��
^�D8D� (FE A��^�n� � �*) is equal to ��
^��89� (FE yA�� , so that admissibility is

satisfied. Proposition 1 then implies that ( � is a MAP configuration for 8D� (FE yA�� .
3.4 Failures of tree-reweighted max-product

In all of our experiments so far, the message updates of equation (9), if suitably relaxed,
have always converged.2 Rather than convergence problems, the breakdown of the algo-
rithm appears to stem primarily from failure of the Uniqueness Condition. If this assump-
tion is not satisfied, we are no longer guaranteed that the mutual agreement condition is
satisfied (i.e., �`�����*����� may be empty). Indeed, a configuration ( � belongs to �`���*�-�����
if and only if the following conditions hold:
Node optimality: The element � �� must achieve �t}�J � � 	 � �� �n� � � � for every 
+� � .
Edge optimality: The pair �g���� � � �\ � must achieve �k}�J � ���	 � � �� � � �� \ �n� � � �
� �\ � for all ��
�� _ �#�!	 .
For a given fixed point � � that fails the Uniqueness Condition, it may or may not be possi-
ble to satisfy these conditions, as the following example illustrates.

Example 2. Consider the single cycle on three vertices, as illustrated in Figure 2. We
define a distribution 8D� (FE yA�� in an indirect manner, by first defining a set of pseudo-max-
marginals � � in panel (a). Here ��� ( � ���4) is a parameter to be specified. Observe that the
symmetry of this construction ensures that � � satisfies the edgewise consistency condition
(Lemma 2) for any �v� ( � ���[) . For each of the three spanning trees of this graph, the collec-
tion � � defines a tree-structured distribution 8 � � (FE � � � as in equation (7). We define the
underlying distribution via � 
���8D� (FE yAs�#� '�� `( ��
^�38 � � (FE � � �P)P��� , where �� is the uniform
distribution (weight � �W] Z � on each tree).

In the case �^% � � � , illustrated in panel (b), it can be seen that two configurations — namely( �v�v� ) and ( �v�v�[) — satisfy the node and edgewise optimality conditions. Therefore,
each of these configurations are global maxima for the cost function '`� &( ��
^��89� (FE � � �P) . On
the other hand, when ��� � ��� , as illustrated in panel (c), any configuration ( � that is
edgewise optimal for all three edges must satisfy ��������� �\ for all �]
�� _ �p�`	 . This is clearly
impossible, so that the fixed point � � cannot be used to specify a MAP assignment.

Of course, it should be recognized that this example was contrived to break down the al-
gorithm. It should also be noted that, as shown in our related work [5], the standard max-

2In a relaxed message update, we take an 	 -step towards the new (log) message, where 	�
�B
� 1 7 �is the step size parameter. To date, we have not been able to prove that relaxed updates will always
converge.
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Figure 2. Cases where the Uniqueness Condition fails. (a) Specification of pseudo-max-
marginals � � . (b) For

�$# �&% ' , both ( � � � � and ( 7 7 7 � are node and edgewise optimal. (c)
For

�*) �+% ' , no configurations are node and edgewise optimal on the full graph.

product algorithm can also break down when this Uniqueness Condition is not satisfied.

4 Discussion

This paper demonstrated the utility of convex combinations of tree-structured distributions
in upper bounding the log probability of the MAP configuration. We developed a family of
tree-reweighted max-product algorithms for computing optimal upper bounds. In certain
cases, the optimal upper bound is met with equality, and hence yields an exact MAP con-
figuration for the original problem on the graph with cycles. An important open question
is to characterize the range of problems for which the upper bound is tight. For problems
involving a binary-valued random vector, we have isolated a class of problems for which
the upper bound is guaranteed to be tight. We have also investigated the Lagrangian dual
associated with the upper bound (3). The dual has a natural interpretation as a tree-relaxed
linear program, and has been applied to turbo decoding [7]. Finally, the analysis and up-
per bounds of this paper can be extended in a straightforward manner to hypertrees of of
higher width. In this context, hypertree-reweighted forms of generalized max-product up-
dates [see 5] can again be used to find optimal upper bounds, which (when they are tight)
again yield exact MAP configurations.
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