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Abstract 

This paper investigates a boosting approach to discriminative 
learning of label sequences based on a sequence rank loss function. 
The proposed method combines many of the advantages of boost­
ing schemes with the efficiency of dynamic programming methods 
and is attractive both, conceptually and computationally. In addi­
tion, we also discuss alternative approaches based on the Hamming 
loss for label sequences. The sequence boosting algorithm offers an 
interesting alternative to methods based on HMMs and the more 
recently proposed Conditional Random Fields. Applications areas 
for the presented technique range from natural language processing 
and information extraction to computational biology. We include 
experiments on named entity recognition and part-of-speech tag­
ging which demonstrate the validity and competitiveness of our 
approach. 

1 Introduction 

The problem of annotating or segmenting observation sequences arises in many 
applications across a variety of scientific disciplines, most prominently in natural 
language processing, speech recognition, and computational biology. Well-known 
applications include part-of-speech (POS) tagging, named entity classification, in­
formation extraction, text segmentation and phoneme classification in text and 
speech processing [7] as well as problems like protein homology detection, secondary 
structure prediction or gene classification in computational biology [3]. 

Up to now, the predominant formalism for modeling and predicting label sequences 
has been based on Hidden Markov Models (HMMs) and variations thereof. Yet, 
despite its success, generative probabilistic models - of which HMMs are a special 
case - have two major shortcomings, which this paper is not the first one to point 
out. First, generative probabilistic models are typically trained using maximum 
likelihood estimation (MLE) for a joint sampling model of observation and label 
sequences. As has been emphasized frequently, MLE based on the joint probability 
model is inherently non-discriminative and thus may lead to suboptimal prediction 
accuracy. Secondly, efficient inference and learning in this setting often requires 



to make questionable conditional independence assumptions. More precisely, in the 
case of HMMs, it is assumed that the Markov blanket of the hidden label variable at 
time step t consists of the previous and next labels as well as the t-th observation. 
This implies that all dependencies on past and future observations are mediated 
through neighboring labels. 

In this paper, we investigate the use of discriminative learning methods for learning 
label sequences. This line of research continues previous approaches for learning 
conditional models , namely Conditional Random Fields (CRFs) [6], and discrim­
inative re-ranking [1, 2] . CRFs have two main advantages compared to HMMs: 
They are trained discriminatively by maximizing a conditional (or pseudo-) likeli­
hood criterion and they are more flexible in modeling additional dependencies such 
as direct dependencies of the t-th label on past or future observations. However, we 
strongly believe there are two further lines of research that are worth pursuing and 
may offer additional benefits or improvements. 

First of all, and this is the main emphasis of this paper, an exponential loss function 
such as the one used in boosting algorithms [9,4] may be preferable to the logarith­
mic loss function used in CRFs. In particular we will present a boosting algorithm 
that has the additional advantage of performing implicit feature selection, typically 
resulting in very sparse models. This is important for model regularization as well 
as for reasons of efficiency in high dimensional feature spaces. Secondly, we will 
also discuss the use of loss functions that explicitly minimize the zer%ne loss on 
labels , i.e. the Hamming loss, as an alternative to loss functions based on ranking 
or predicting entire label sequences. 

2 Additive Models and Exponential Families 

Formally, learning label sequences is a generalization of the standard supervised clas­
sification problem. The goal is to learn a discriminant function for sequences, i.e. a 
mapping from observation sequences X = (X1,X2, ... ,Xt, ... ) to label sequences 
y = (Y1, Y2, ... , Yt, ... ). The availability of a training set of labeled sequences 
X == {(Xi, yi) : i = 1, ... ,n} to learn this mapping from data is assumed. 

In this paper, we focus on discriminant functions that can be written as additive 
models. The models under consideration take the following general form: 

Fe(X , Y) = L Fe(X, Y; t), with Fe(X, Y; t) = L fh!k(X , Y ; t) (1) 
k 

Here fk denotes a (discrete) feature in the language of maximum entropy mod­
eling, or a weak learner in the language of boosting. In the context of label se-
quences fk will typically be either of the form f~1)(Xt+s,Yt) (with S E {-l ,O, l}) 
or f~2) (Yt-1, Yt). The first type of features will model dependencies between the 
observation sequence X and the t-th label in the sequence, while the second type 
will model inter-label dependencies between neighboring label variables. For ease 
of presentation, we will assume that all features are binary, i.e. each learner corre­
sponds to an indicator function. A typical way of defining a set of weak learners is 
as follows: 

(1) ( ) fk Xt+s , Yt 
(2) ( ) fk Yt-1, Yt 

J(Yt, y(k))Xdxt+s) 

J(Yt ,y(k))J(Yt-1 ,y(k)) . 

(2) 

(3) 

where J denotes the Kronecker-J and Xk is a binary feature function that extracts 
a feature from an observation pattern; y(k) and y(k) refer to the label values for 
which the weak learner becomes "active". 



There is a natural way to associate a conditional probability distribution over label 
sequences Y with an additive model Fo by defining an exponential family for every 
fixed observation sequence X 

Po(YIX) == exp~:(~; Y)], Zo(X) == Lexp[Fo(X,Y)]. 
y 

(4) 

This distribution is in exponential normal form and the parameters B are also called 
natural or canonical parameters. By performing the sum over the sequence index 
t, we can see that the corresponding sufficient statistics are given by Sk(X, Y) == 
2:t h(X, Y; t). These sufficient statistics simply count the number of times the 
feature fk has been "active" along the labeled sequence (X, Y). 

3 Logarithmic Loss and Conditional Random Fields 

In CRFs, the log-loss of the model with parameters B w.r.t. a set of sequences X 
is defined as the negative sum of the conditional probabilities of each training label 
sequence given the observation sequence, 

Although [6] has proposed a modification of improved iterative scaling for parameter 
estimation in CRFs, gradient-based methods such as conjugate gradient descent 
have often found to be more efficient for minimizing the convex loss function in 
Eq. (5) (cf. [8]). The gradient can be readily computed as 

(6) 

where expectations are taken w.r.t. Po(YIX). The stationary equations then simply 
state that uniformly averaged over the training data, the observed sufficient statis­
tics should match their conditional expectations. Computationally, the evaluation 
of S(Xi, yi) is straightforward counting, while summing over all sequences Y to 
compute E [S(X, Y)IX = Xi] can be performed using dynamic programming, since 
the dependency structure between labels is a simple chain. 

4 Ranking Loss Functions for Label Sequences 

As an alternative to logarithmic loss functions, we propose to minimize an upper 
bound on the ranking loss [9] adapted to label sequences. The ranking loss of a 
discriminant function Fo w.r.t. a set of training sequences is defined as 

1{rnk(B;X) = L L 8(Fo(Xi,Y) _FO(Xi,yi)), 8(x) == {~ ~~~:r~~e (7) 
i Y;iY; 

which is simply the sum of the number of label sequences that are ranked higher than 
or equal to the true label sequence over all training sequences. It is straightforward 
to see (based on a term by term comparison) that an upper bound on the rank loss 
is given by the following exponential loss function 

1{exp(B; X) == L L exp [FO(Xi, Y) - FO(Xi, yi)] = L [Po (~iIXi) -1].(8) 
i Y#Y' i 0 



Interestingly this simply leads to a loss function that uses the inverse conditional 
probability of the true label sequence, if we define this probability via the expo­
nential form in Eq. (4). Notice that compared to [1], we include all sequences and 
not just the top N list generated by some external mechanism. As we will show 
shortly, an explicit summation is possible because of the availability of dynamic 
programming formulation to compute sums over all sequences efficiently. 

In order to derive gradient equations for the exponential loss we can simply make 
use of the elementary facts 

\1 eP(()) 1 \1 eP(()) 
\le(-logP(()))=- P(()) , and\le p (())=- P(())2 

\le(-logP(())) 
P(()) 

(9) 

Then it is easy to see that 

(10) 

The only difference between Eq. (6) and Eq. (10) is the non-uniform weighting of 
different sequences by their inverse probability, hence putting more emphasis on 
training label sequences that receive a small overall (conditional) probability. 

5 Boosting Algorithm for Label Sequences 

As an alternative to a simple gradient method, we now turn to the derivation of 
a boosting algorithm, following the boosting formulation presented in [9]. Let us 
introduce a relative weight (or distribution) D(i , Y) for each label sequence Y 
w.r.t. a training instance (Xi, yi), i.e. L i Ly D(i , Y) = 1, 

D(i, Y) 
exp [Fe (Xi, Y) - Fe (Xi, yi)] 

for Y 1- y i (11) 
Lj, LY,#Yj exp [Fe(Xj , Y') - Fe (Xj, y j)]' 

. Pe(YIXi) . _ Pe(yi IXi) - l - 1 
D(z) 1 _ Pe(yiIXi) ' D(z) = Lj [Pe(yjIXj) -l _ 1] (12) 

In addition, we define D(i, y i) = O. Eq. (12) shows how we can split D(i, Y) into 
a relative weight for each training instance, given by D(i) , and a relative weight of 
each sequence, given by the re-normalized conditional probability Pe(YIXi ). Notice 
that D(i) --+ 0 as we approach the perfect prediction case of Pe(yi IXi) --+ 1. 

We define a boosting algorithm which in each round aims at minimizing the par­
tition function or weight normalization constant Zk w.r.t. a weak learner fk and a 
corresponding optimal parameter increment L,()k 

Zk(L,()k) == "D(i)" P~~IXli) .) exp [L,()k(Sk(Xi , Y)-Sk(Xi, yi))](13) 
~ ~ . 1- e Y·X· 

• Y # Y ' 

= ~ ( ~ D(i)P(bIXi; k)) exp [bL,()k], (14) 

where Pe(bIXi; k) = LYEY (b;X i) Pe(YIXi)/( l - Pe(yi IXi)) and Y(b; Xi) == {Y : 
Y 1- y i 1\ (Sk(Xi,Y) - Sk(Xi,yi)) = b}. This minimization problem is only 
tractable if the number of features is small, since a dynamic programming run 
with accumulators [6] for every feature seems to be required in order to compute 



the probabilities Po(bIXi; k), i.e. the probability for the k-th feature to be active 
exactly b times, conditioned on the observation sequence Xi. 

In cases, where this is intractable (and we assume this will be the case in most 
applications), one can instead minimize an upper bound on every Zk' The general 
idea is to exploit the convexity of the exponential function and to bound 

(15) 

which is valid for every x E [xmin; xmax]. 

We introduce the following shorthand notation Uik(Y) == Sk(Xi,Y) - SdXi,yi), 
max - (Y) max _ max min -' (Y) min-Uik = maxy:;tyi Uik , Uk - maxi Uik , Uik = mmy:;tyi Uik , Uk = 

mini u'[kin and 7fi(Y) == Po(YIXi )!(1 - Po(yiIXi) ) which allows us to rewrite 

Zk(L.Bk) = LD(i) L 7fi(Y) exp [L.BkUik(Y)] (16) 
y:;tyi 

< " D(i) " 7fi(Y) [u'[kax - Uik(:) eL:o.Oku,&;n + Uik(Y) - u~in eL:o.Oku,&ax] 
- ~ ~ uI?ax - uI?m uI?ax - uI?m 

i y:;tyi tk tk tk tk 

LD(i) (rikeMkU,&;n + (1- rik)eMkU,&aX), where (17) 
i 

rik == " 7fi(Y) u'[kax - Uik(:) (18) 
~ uI?ax _ u mm 

y:;tyi tk tk 

By taking the second derivative w.r.t. L.Bk it is easy to verify that this is a convex 
function in L.Bk which can be minimized with a simple line search. 

If one is willing to accept a looser bound, one can instead work with the inter­
val [uk'in; uk'ax] which is the union of the intervals [u'[kin; u'[kax] for every training 
sequence i and obtain the upper bound 

Zk(L.Bk) < rkeMkuk';n + (1 _ rk)eL:o.Okuk'ax 

"D(i) " 7fi(Y) uk'ax - Uik(:) 
~ ~ u max _umm 

i y=/-yi k k 

Which can be solved analytically 

L.B - 1 10 ( -rkuk'in ) 
k - uk'ax _ uk'in g (1 - rk)Uk'ax 

but will in general lead to more conservative step sizes. 

(19) 

(20) 

(21) 

The final boosting procedure picks at every round the feature for which the upper 
bound on Zk is minimal and then performs an update of Bk +- Bk + L.Bk. Of course, 
one might also use more elaborate techniques to find the optimal L.Bk, once !k 
has been selected, since the upper bound approximation may underestimate the 
optimal step sizes. It is important to see that the quantities involved (rik and rk, 
respectively) are simple expectations of sufficient statistics that can be computed for 
all features simultaneously with a single dynamic programming run per sequence. 

6 Hamming Loss for Label Sequences 

In many applications one is primarily interested in the label-by-labelloss or Ham­
ming loss [9]. Here we investigate how to train models by minimizing an upper 



bound on the Hamming loss. The following logarithmic loss aims at maximizing 
the log-probability for each individual label and is given by 

F1og(B;X) == - LL)og Po(y1I Xi ) = - LLlog L PO(YIXi ). (22) 
v:Yt = Y; 

Again, focusing on gradient descent methods, the gradient is given by 

As can be seen, the expected sufficient statistics are now compared not to their 
empirical values, but to their expected values, conditioned on a given label value 
Y; (and not the entire sequence Vi). In order to evaluate these expectations, one 
can perform dynamic programming using the algorithm described in [5], which 
has (independently of our work) focused on the use of Hamming loss functions in 
the context of CRFs. This algorithm has the complexity of the forward-backward 
algorithm scaled by a constant. 

Similar to the log-loss case, one can define an exponential loss function that corre­
sponds to a margin-like quantity at every single label. We propose minimizing the 
following loss function 

~ ~ ~ exp [F'(X;, Y) -log Y'~": exp [Fo(X" V')] ]<24) 

L l:vexp [FO(Xi,y)] = LR ( iIXi'B) - l (25) 
. t l:v Yt=y i exp [FO(Xi, Y)] . t 0 Yt , 
2, 't 2 , 

As a motivation, we point out that for the case of sequences of length 1, this 
will reduce to the standard multi-class exponential loss. Effectively in this model, 
the prediction of a label Yt will mimic the probabilistic marginalization, i.e. y; = 
argmaxy FO(Xi, Y; t), FO(Xi, Y; t) = log l:v:Yt=Y exp [FO(Xi, Y)]. 

Similar to the log-loss case, the gradient is given by 

_ "E [S(X , Y)IX = Xi ,Yt = yn ~ E [S(Xi, Y)IX = Xi] (26) 

it' Po(y:IX') 

Again, we see the same differences between the log-loss and the exponential loss, but 
this time for individual labels. Labels for which the marginal probability Po (yf IXi) 
is small are accentuated in the exponential loss. The computational complexity for 
computing \7 oFexp and \7 oF1og is practically the same. We have not been able to 
derive a boosting formulation for this loss function, mainly because it cannot be 
written as a sum of exponential terms. We have thus resorted to conjugate gradient 
descent methods for minimizing Fexp in our experiments. 

7 Experimental Results 

7 .1 Named Entity Recognition 

Named Entity Recognition (NER) , a subtask of Information Extraction, is the task 
of finding the phrases that contain person, location and organization names, times 
and quantities. Each word is tagged with the type of the name as well as its position 
in the name phrase (i.e. whether it is the first item of the phrase or not) in order 
to represent the boundary information. 



We used a Spanish corpus which was provided for the Special Session of CoNLL2002 
on NER. The data is a collection of news wire articles and is tagged for person 
names, organizations, locations and miscellaneous names. 

We used simple binary features to ask questions about the word being tagged, as 
well as the previous tag (i.e. HMM features). An example feature would be: Is the 
current word= 'Clinton' and the tag='Person-Beginning '? We also used features to 
ask detailed questions (i .e. spelling features) about the current word (e.g.: Is the 
current word capitalized and the tag='Location-Intermediate'?) and the neighbor­
ing words. These questions cannot be asked (in a principled way) in a generative 
HMM model. We ran experiments comparing the different loss functions optimized 
with the conjugate gradient method and the boosting algorithm. We designed 
three sets of features: HMM features (=31), 31 and detailed features of the cur­
rent word (= 32), and 32 and detailed features of the neighboring words (=33). 
The results summarized in Table 1 
demonstrate the competitiveness of the 
proposed loss functions with respect to 
1{log. We observe that with different 
sets of features, the ordering of the per­
formance of the loss functions changes. 
Boosting performs worse than the conju­
gate gradient when only HMM features 
are used, since there is not much infor­
mation in the features other than the 
identity of the word to be labeled. Con­
sequently, the boosting algorithm needs 
to include almost all weak learners in 
the ensemble and cannot exploit feature 
sparseness. When there are more de-

Feature Objective 
Set log exp boost 

Sl 
1{ 6.60 6.95 8.05 
:F 6.73 7.33 -

S2 
1{ 6.72 7.03 6.93 
:F 6.67 7.49 -

S3 
1{ 6.15 5.84 6.77 
:F 5.90 5.10 -

Table 1: Test error of the Spanish cor­
pus for named entity recognition. 

tailed features , the boosting algorithm is competitive with the conjugate gradient 
method, but has the advantage of generating sparser models. The conjugate gradi­
ent method uses all of the available features, whereas boosting uses only about 10% 
of the features. 

7.2 Part of Speech Tagging 

We used the Penn TreeBank corpus for 
the part-of-speech tagging experiments. 
The features were similar to the fea­
ture sets Sl and S2 described above in 
the context of NER. Table 2 summarizes 
the experimental results obtained on this 
task. It can be seen that the test er­
rors obtained by different loss functions 
lie within a relatively small range. Qual­
itatively the behavior of the different op­
t imization methods is comparable to the 
NER experiments . 

7.3 General Comments 

Feature Objective 

Set log exp boost 

Sl 
1{ 4.69 5.04 10.58 
:F 4.88 4.96 -

S2 
1{ 4.37 4.74 5.09 
:F 4.71 4.90 -

Table 2: Test error of the Penn Tree­
Bank corpus for POS 

Even with the t ighter bound in the boosting formulation , the same features are 
selected many times, because of the conservative estimate of the step size for pa­
rameter updates. We expect to speed up the convergence of the boosting algorithm 



by using a more sophisticated line search mechanism to compute the optimal step 
length, a conjecture that will be addressed in future work. 

Although we did not use real-valued features in our experiments, we observed that 
including real-valued features in a conjugate gradient formulation is a challenge, 
whereas it is very natural to have such features in a boosting algorithm. 

We noticed in our experiments that defining a distribution over the training in­
stances using the inverse conditional probability creates problems in the boosting 
formulation for data sets that are highly unbalanced in terms of the length of the 
training sequences. To overcome this problem, we divided the sentences into pieces 
such that the variation in the length of the sentences is small. The conjugate gra­
dient optimization, on the other hand, did not appear to suffer from this problem. 

8 Conclusion and Future Work 

This paper makes two contributions to the problem of learning label sequences. 
First, we have presented an efficient algorithm for discriminative learning of label 
sequences that combines boosting with dynamic programming. The algorithm com­
pares favorably with the best previous approach, Conditional Random Fields, and 
offers additional benefits such as model sparseness. Secondly, we have discussed the 
use of methods that optimize a label-by-labelloss and have shown that these meth­
ods bear promise for further improving classification accuracy. Our future work will 
investigate the performance (in both accuracy and computational expenses) of the 
different loss functions in different conditions (e.g. noise level, size of the feature 
set). 
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