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Abstract 

We present the bump mixture model, a statistical model for analog 
data where the probabilistic semantics, inference, and learning 
rules derive from low-level transistor behavior. The bump mixture 
model relies on translinear circuits to perform probabilistic infer-
ence, and floating-gate devices to perform adaptation. This system 
is low power, asynchronous, and fully parallel, and supports vari-
ous on-chip learning algorithms. In addition, the mixture model can 
perform several tasks such as probability estimation, vector quanti-
zation, classification, and clustering. We tested a fabricated system 
on clustering, quantization, and classification of handwritten digits 
and show performance comparable to the E-M algorithm on mix-
tures of Gaussians.  

1 Introduction 

Many system-on-a-chip applications, such as data compression and signal process-
ing, use online adaptation to improve or tune performance. These applications can 
benefit from the low-power compact design that analog VLSI learning systems can 
offer. Analog VLSI learning systems can benefit immensely from flexible learning 
algorithms that take advantage of silicon device physics for compact layout, and that 
are capable of a variety of learning tasks. One learning paradigm that encompasses a 
wide variety of learning tasks is density estimation, learning the probability 
distribution over the input data. A silicon density estimator can provide a basic 
template for VLSI systems for feature extraction, classification, adaptive vector 
quantization, and more.  

In this paper, we describe the bump mixture model, a statistical model that describes 
the probability distribution function of analog variables using low-level transistor 
equations. We intend the bump mixture model to be the silicon version of mixture of 
Gaussians [1], one of the most widely used statistical methods for modeling the 
probability distribution of a collection of data. Mixtures of Gaussians appear in 
many contexts from radial basis functions [1] to hidden Markov models [2]. In the 
bump mixture model, probability computations derive from translinear circuits [3] 
and learning derives from floating-gate device equations [4]. The bump mixture 



 

model can perform different functions such as quantization, probability estimation, 
and classification.  In addition this VLSI mixture model can implement multiple 
learning algorithms using different peripheral circuitry. Because the equations for 
system operation and learning derive from natural transistor behavior, we can build 
large bump mixture model with millions of parameters on a single chip. We have 
fabricated a bump mixture model, and tested it on clustering, classification, and vec-
tor quantization of handwritten digits. The results show that the fabricated system 
performs comparably to mixtures of Gaussians trained with the E-M algorithm [1].   

Our work builds upon several trends of research in the VLSI community. The results 
in this paper are complement recent work on probability propagation in analog VLSI 
[5-7]. These previous systems, intended for decoding applications in communication 
systems, model special forms of probability distributions over discrete variables, 
and do not incorporate learning. In contrast, the bump mixture model performs in-
ference and learning on probability distributions over continuous variables. The 
bump mixture model significantly extends previous results on floating-gate circuits 
[4]. Our system is a fully realized floating-gate learning algorithm that can be used 
for vector quantization, probability estimation, clustering, and classification. Fi-
nally, the mixture model’s architecture is similar to many previous VLSI vector 
quantizers [8, 9]. We can view the bump mixture model as a VLSI vector quantizer 
with well-defined probabilistic semantics. Computations such as probability estima-
tion and maximum-likelihood classification have a natural statistical interpretation 
under the mixture model. In addition, because we rely on floating-gate devices, the 
mixture model does not require a refresh mechanism unlike previous learning VLSI 
quantizers. 

2 The adaptive bump circuit  

The adaptive bump circuit [4], depicted in Fig.1(a-b), forms the basis of the bump 
mixture model. This circuit is slightly different from previous versions reported in 
the literature. Nevertheless, the high level functionality remains the same; the adap-
tive bump circuit computes the similarity between a stored variable and an input, 
and adapts to increase the similarity between the stored variable and input.   

Fig.1(a) shows the computation portion of the circuit. The bump circuit takes as 
input, a differential voltage signal (+Vin, −Vin) around a DC bias, and computes the 
similarity between Vin and a stored value, µ. We represent the stored memory µ as a 
voltage: 

 -
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where Vw+ and Vw− are the gate-offset voltages stored on capacitors C1 and C2. Be-
cause C1 and C2 isolate the gates of transistors M1 and M2 respectively, these tran-
sistors are floating-gate devices. Consequently, the stored voltages Vw+ and Vw− are 
nonvolatile.  We can express the floating-gate voltages Vfg1 and Vfg2 as 
Vfg1=Vin+Vw+ and Vfg2=Vw−−Vin, and the output of the bump circuit as [10]: 
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where Ib is the bias current, κ is the gate-coupling coefficient, Ut is the thermal volt-
age, and S depends on the transistor sizes. Fig.1(b) shows Iout for three different 
stored values of µ. As the data show, different µ’s shift the location of the peak re-
sponse of the circuit. 



 

Fig.1(b) shows the circuit that implements learning in the adaptive bump circuit. We 
implement learning through Fowler-Nordheim tunneling [11] on tunneling junctions 
M5-M6 and hot electron injection [12] on the floating-gate transistors M3-M4. Tran-
sistor M3 and M5 control injection and tunneling on M1’s floating-gate. Transistors 
M4 and M6 control injection and tunneling on M2’s floating-gate. We activate tun-
neling and injection by a high Vtun and low Vinj respectively. In the adaptive bump 
circuit, both processes increase the similarity between Vin and µ. In addition, the 
magnitude of the update does not depend on the sign of (Vin −µ) because the differ-
ential input provides common-mode rejection to the input differential pair. 

The similarity function, as seen in Fig.1(b), has a Gaussian-like shape. Conse-
quently, we can equate the output current of the bump circuit with the probability of 
the input under a distribution parameterized by mean µ: 

 ( )|in outP V Iµ =  (3) 

In addition, increasing the similarity between Vin and µ is equivalent to increasing 
P(Vin |µ). Consequently, the adaptive bump circuit adapts to maximize the likelihood 
of the present input under the circuit’s probability distribution.  

3 The bump mixture model  

We now describe the computations and learning rule implemented by the bump mix-
ture model. A mixture model is a general class of statistical models that approxi-
mates the probability of an analog input as the weighted sum of probability of the 
input under several simple distributions. The bump mixture model comprises a set 
of Gaussian-like probability density functions, each parameterized by a mean vec-
tor, µµµµi. Denoting the jth dimension of the mean of the ith density as µij , we express 
the probability of an input vector x as: 
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Figure 1. (a-b) The adaptive bump 
circuit. (a) The original bump cir-
cuit augmented by capacitors C1 
and C2, and cascode transistors 
(driven by Vcasc). (b) The adapta-
tion subcircuit. M3 and M4 control 
injection on the floating-gates and 
M5 and M6 control tunneling.  (b) 
Measured output current of a bump 
circuit for three programmed 
memories. 
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where N is the number of densities in the model and i denotes the ith density. P(x|i) 
is the product of one-dimensional densities P(xj|µij) that depend on the jth dimension 
of the ith mean, µij . We derive each one-dimensional probability distribution from 
the output current of a single bump circuit. The bump mixture model makes two 
assumptions: (1) the component densities are equally likely, and (2) within each 
component density, the input dimensions are independent and have equal variance. 
Despite these restrictions, this mixture model can, in principle, approximate any 
probability density function [1].  

The bump mixture model adapts all µµµµi to maximize the likelihood of the training 
data. Learning in the bump mixture model is based on the E-M algorithm, the stan-
dard algorithm for training Gaussian mixture models. The E-M algorithm comprises 
two steps. The E-step computes the conditional probability of each density given the 
input, P(i|x). The M-step updates the parameters of each distribution to increase the 
likelihood of the data, using P(i|x) to scale the magnitude of each parameter update. 
In the online setting, the learning rule is: 
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where η is a learning rate and k denotes component densities. Because the adaptive 
bump circuit already adapts to increase the likelihood of the present input, we ap-
proximate E-M by modulating injection and tunneling in the adaptive bump circuit 
by the conditional probability: 

 ( ) ( )|ij j ijP i f xµ η µ∆ = −x  (6) 

where f() is the parameter update implemented by the bump circuit. We can modu-
late the learning update in (6) with other competitive factors instead of the condi-
tional probability to implement a variety of learning rules such as online K-means.  

4 Si l icon implementation 

We now describe a VLSI system that implements the silicon mixture model. The 
high level organization of the system detailed in Fig.2, is similar to VLSI vector 
quantization systems.  The heart of the mixture model is a matrix of adaptive bump 
circuits where the ith row of bump circuits corresponds to the ith component density. 
In addition, the periphery of the matrix comprises a set of inhibitory circuits for per-
forming probability estimation, inference, quantization, and generating feedback for 
learning. 

We send each dimension of an input x down a single column. Unity-gain inverting 
amplifiers (not pictured) at the boundary of the matrix convert each single ended 
voltage input into a differential signal. Each bump circuit computes a current that 
represents (P(xj|µij))

σ, where σ is the common variance of the one-dimensional den-
sities. The mixture model computes P(x|i) along the ith row and inhibitory circuits 
perform inference, estimation, or quantization. We utilize translinear devices [3] to 
perform all of these computations. Translinear devices, such as the subthreshold 
MOSFET and bipolar transistor, exhibit an exponential relationship between the 
gate-voltage and source current.  This property allows us to establish a power-law 
relationship between currents and probabilities (i.e. a linear relationship between 
gate voltages and log-probabilities).   



 

We compute the multiplication of the probabilities in each row of Fig.2 as addition 
in the log domain using the circuit in Fig.3(a). This circuit first converts each bump 
circuit’s current into a voltage using a diode (e.g. M1). M2’s capacitive divider com-
putes Vavg as the average of the scalar log probabilities, logP(xj|µij): 

 ( ) ( )/ log |avg j ijj
V N P xσ µ= �  (7) 

where σ is the variance, N is the number of input dimensions, and voltages are in 
units of κ/Ut (Ut is the thermal voltage and κ is the transistor-gate coupling coeffi-
cient). Transistors M2- M5 mirror Vavg to the gate of M5. We define the drain voltage 
of M5 as log P(x|i) (up to an additive constant) and compute: 
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where k is a constant dependent on Vg (the control gate voltage on M5), and C1 and 
C2 are capacitances. From eq.8 we can derive the variance as: 

 ( )1 1 2/NC C Cσ = +  (9) 

The system computes different output functions and feedback signals for learning by 
operating on the log probabilities of eq.8. Fig.3(b) demonstrates a circuit that com-
putes P(i|x) for each distribution. The circuit is a k-input differential pair where the 
bias transistor M0 normalizes currents representing the probabilities P(x|i) at the ith 
leg.  Fig.3(c) demonstrates a circuit that computes P(x). The ith transistor exponenti-
ates logP(x|i), and a single wire sums the currents. We can also apply other inhibi-
tory circuits to the log probabilities such as winner-take-all circuits (WTA) [13] and 
resistive networks [14]. In our fabricated chip, we implemented probability estima-
tion,conditional probability computation, and WTA. The WTA outputs the index of 
the most likely component distribution for the present input, and can be used to im-
plement vector quantization and to produce feedback for an online K-means learn-
ing rule. 

At each synapse, the system combines a feedback signal, such as the conditional 
probability P(i|x), computed at the matrix periphery, with the adaptive bump circuit 
to implement learning. We trigger adaptation at each bump circuit by a rate-coded 
spike signal generated from the inhibitory circuit’s current outputs. We generate this 
spike train with a current-to-spike converter based on Lazzaro’s low-powered spik-
ing neuron [15]. This rate-coded signal toggles Vtun and Vinj at each bump circuit. 
Consequently, adaptation is proportional to the frequency of the spike train, which 
is in turn a linear function of the inhibitory feedback signal.  The alternative to the 
rate code would be to transform the inhibitory circuit’s output directly into analog 
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Figure 2. Bump mixture 
model architecture. The 
system comprises a ma-
trix of adaptive bump 
circuits where each row
computes the probability 
P(x|µµµµi). Inhibitory cir-
cuits transform the out-
put of each row into 
system outputs. Spike 
generators also trans-
form inhibitory circuit 
outputs into rate-coded 
feedback for learning.  



 

Vtun and Vinj signals.  Because injection and tunneling are highly nonlinear functions 
of Vinj and Vtun respectively, implementing updates that are linear in the inhibitory 
feedback signal is quite difficult using this approach.  

5 Experimental  Results  and Conclusions 

We fabricated an 8 x 8 mixture model (8 probability distribution functions with 8 
dimensions each) in a TSMC 0.35µm CMOS process available through MOSIS, and 
tested the chip on synthetic data and a handwritten digits dataset. In our tests, we 
found that due to a design error, one of the input dimensions coupled to the other 
inputs. Consequently, we held that input fixed throughout the tests, effectively re-
ducing the input to 7 dimensions. In addition, we found that the learning rule in eq.6 
produced poor performance because the variance of the bump distributions was too 
large. Consequently, in our learning experiments, we used the hard winner-take-all 
circuit to control adaptation, resulting in a K-means learning rule.  We trained the 
chip to perform different tasks on handwritten digits from the MNIST dataset [16]. 
To prepare the data, we first perform PCA to reduce the 784-pixel images to seven-
dimensional vectors, and then sent the data on-chip. 

We first tested the circuit on clustering handwritten digits. We trained the chip on 
1000 examples of each of the digits 1-8.  Fig.4(a) shows reconstructions of the eight 
means before and after training. We compute each reconstruction by multiplying the 
means by the seven principal eigenvectors of the dataset. The data shows that the 
means diverge to associate with different digits. The chip learns to associate most 
digits with a single probability distribution. The lone exception is digit 5 which 
doesn’t clearly associate with one distribution.  We speculate that the reason is that 
3’s, 5’s, and 8’s are very similar in our training data’s seven-dimensional represen-
tation. Gaussian mixture models trained with the E-M algorithm also demonstrate 
similar results, recovering only seven out of the eight digits. 

We next evaluated the same learned means on vector quantization of a set of test 
digits (4400 examples of each digit). We compare the chip’s learned means with 
means learned by the batch E-M algorithm on mixtures of Gaussians (with σ=0.01), 
a mismatch E-M algorithm that models chip nonidealities, and a non-adaptive base-
line quantizer. The purpose of the mismatch E-M algorithm was to assess the effect 
of nonuniform injection and tunneling strengths in floating-gate transistors. Because 
tunneling and injection magnitudes can vary by a large amount on different floating-
gate transistors, the adaptive bump circuits can learn a mean that is somewhat off-
center. We measured the offset of each bump circuit when adapting to a constant 
input and constructed the mismatch E-M algorithm by altering the learned means 
during the M-step by the measured offset. We constructed the baseline quantizer by 
selecting, at random, an example of each digit for the quantizer codebook. For each 
quantizer, we computed the reconstruction error on the digit’s seven-dimensional 
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Figure 3. (a) Circuit for computing logP(x|i). (b) Circuit for computing P(i|x). The 
current through the ith leg represents  P(i|x). (c) Circuit for computing P(x). 



 

representation when we represent each test digit by the closest mean. The results in 
Fig.4(b) show that for most of the digits the chip’s learned means perform as well as 
the E-M algorithm, and better than the baseline quantizer in all cases. The one digit 
where the chip’s performance is far from the E-M algorithm is the digit “1”. Upon 
examination of the E-M algorithm’s results, we found that it associated two means 
with the digit “1”, where the chip allocated two means for the digit “3”. Over all the 
digits, the E-M algorithm exhibited a quantization error of 9.98, mismatch E-M 
gives a quantization error of 10.9, the chip’s error was 11.6, and the baseline quan-
tizer’s error was 15.97. The data show that mismatch is a significant factor in the 
difference between the bump mixture model’s performance and the E-M algorithm’s 
performance in quantization tasks. 

Finally, we use the mixture model to classify handwritten digits. If we train a sepa-
rate mixture model for each class of data, we can classify an input by comparing the 
probabilities of the input under each model. In our experiment, we train two sepa-
rate mixture models: one on examples of the digit 7, and the other on examples of 
the digit 9.  We then apply both mixtures to a set of unseen examples of digits 7 and 
9, and record the probability score of each unseen example under each mixture 
model. We plot the resulting data in Fig.4(c). Each axis represents the probability 
under a different class. The data show that the model probabilities provide a good 
metric for classification. Assigning each test example to the class model that outputs 
the highest probability results in an accuracy of 87% on 2000 unseen digits. Addi-
tional software experiments show that mixtures of Gaussians (σ=0.01) trained by 
the batch E-M algorithm provide an accuracy of 92.39% on this task. 

Our test results show that the bump mixture model’s performance on several learn-
ing tasks is comparable to standard mixtures of Gaussians trained by E-M. These 
experiments give further evidence that floating-gate circuits can be used to build 
effective learning systems even though their learning rules derive from silicon phys-
ics instead of statistical methods.  The bump mixture model also represents a basic 
building block that we can use to build more complex silicon probability models 
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over analog variables. This work can be extended in several ways. We can build 
distributions that have parameterized covariances in addition to means. In addition, 
we can build more complex, adaptive probability distributions in silicon by combin-
ing the bump mixture model with silicon probability models over discrete variables 
[5-7] and spike-based floating-gate learning circuits [4]. 
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