

Adaptive Quantization and Density
Estimation in Silicon

David Hsu Seth Bridges Miguel Figueroa Chris Diorio

 Department of Computer Science and Engineering
 University of Washington
 114 Sieg Hall, Box 352350
 Seattle, WA 98195-2350 USA
 {hsud, seth, miguel, diorio}@cs.washington.edu

Abstract

We present the bump mixture model, a statistical model for analog
data where the probabilistic semantics, inference, and learning
rules derive from low-level transistor behavior. The bump mixture
model relies on translinear circuits to perform probabilistic infer-
ence, and floating-gate devices to perform adaptation. This system
is low power, asynchronous, and fully parallel, and supports vari-
ous on-chip learning algorithms. In addition, the mixture model can
perform several tasks such as probability estimation, vector quanti-
zation, classification, and clustering. We tested a fabricated system
on clustering, quantization, and classification of handwritten digits
and show performance comparable to the E-M algorithm on mix-
tures of Gaussians.

1 Introduction

Many system-on-a-chip applications, such as data compression and signal process-
ing, use online adaptation to improve or tune performance. These applications can
benefit from the low-power compact design that analog VLSI learning systems can
offer. Analog VLSI learning systems can benefit immensely from flexible learning
algorithms that take advantage of silicon device physics for compact layout, and that
are capable of a variety of learning tasks. One learning paradigm that encompasses a
wide variety of learning tasks is density estimation, learning the probability
distribution over the input data. A silicon density estimator can provide a basic
template for VLSI systems for feature extraction, classification, adaptive vector
quantization, and more.

In this paper, we describe the bump mixture model, a statistical model that describes
the probability distribution function of analog variables using low-level transistor
equations. We intend the bump mixture model to be the silicon version of mixture of
Gaussians [1], one of the most widely used statistical methods for modeling the
probability distribution of a collection of data. Mixtures of Gaussians appear in
many contexts from radial basis functions [1] to hidden Markov models [2]. In the
bump mixture model, probability computations derive from translinear circuits [3]
and learning derives from floating-gate device equations [4]. The bump mixture

model can perform different functions such as quantization, probability estimation,
and classification. In addition this VLSI mixture model can implement multiple
learning algorithms using different peripheral circuitry. Because the equations for
system operation and learning derive from natural transistor behavior, we can build
large bump mixture model with millions of parameters on a single chip. We have
fabricated a bump mixture model, and tested it on clustering, classification, and vec-
tor quantization of handwritten digits. The results show that the fabricated system
performs comparably to mixtures of Gaussians trained with the E-M algorithm [1].

Our work builds upon several trends of research in the VLSI community. The results
in this paper are complement recent work on probability propagation in analog VLSI
[5-7]. These previous systems, intended for decoding applications in communication
systems, model special forms of probability distributions over discrete variables,
and do not incorporate learning. In contrast, the bump mixture model performs in-
ference and learning on probability distributions over continuous variables. The
bump mixture model significantly extends previous results on floating-gate circuits
[4]. Our system is a fully realized floating-gate learning algorithm that can be used
for vector quantization, probability estimation, clustering, and classification. Fi-
nally, the mixture model’s architecture is similar to many previous VLSI vector
quantizers [8, 9]. We can view the bump mixture model as a VLSI vector quantizer
with well-defined probabilistic semantics. Computations such as probability estima-
tion and maximum-likelihood classification have a natural statistical interpretation
under the mixture model. In addition, because we rely on floating-gate devices, the
mixture model does not require a refresh mechanism unlike previous learning VLSI
quantizers.

2 The adaptive bump circuit

The adaptive bump circuit [4], depicted in Fig.1(a-b), forms the basis of the bump
mixture model. This circuit is slightly different from previous versions reported in
the literature. Nevertheless, the high level functionality remains the same; the adap-
tive bump circuit computes the similarity between a stored variable and an input,
and adapts to increase the similarity between the stored variable and input.

Fig.1(a) shows the computation portion of the circuit. The bump circuit takes as
input, a differential voltage signal (+Vin, −Vin) around a DC bias, and computes the
similarity between Vin and a stored value, µ. We represent the stored memory µ as a
voltage:

 -

2
w wV Vµ +−

= (1)

where Vw+ and Vw− are the gate-offset voltages stored on capacitors C1 and C2. Be-
cause C1 and C2 isolate the gates of transistors M1 and M2 respectively, these tran-
sistors are floating-gate devices. Consequently, the stored voltages Vw+ and Vw− are
nonvolatile. We can express the floating-gate voltages Vfg1 and Vfg2 as
Vfg1=Vin+Vw+ and Vfg2=Vw−−Vin, and the output of the bump circuit as [10]:

()()() ()()()22

1 2
cosh 8 /cosh 4 /

b b
out

t int fg fg

I I
I

SU VSU V V κ µκ
= =

−−
 (2)

where Ib is the bias current, κ is the gate-coupling coefficient, Ut is the thermal volt-
age, and S depends on the transistor sizes. Fig.1(b) shows Iout for three different
stored values of µ. As the data show, different µ’s shift the location of the peak re-
sponse of the circuit.

Fig.1(b) shows the circuit that implements learning in the adaptive bump circuit. We
implement learning through Fowler-Nordheim tunneling [11] on tunneling junctions
M5-M6 and hot electron injection [12] on the floating-gate transistors M3-M4. Tran-
sistor M3 and M5 control injection and tunneling on M1’s floating-gate. Transistors
M4 and M6 control injection and tunneling on M2’s floating-gate. We activate tun-
neling and injection by a high Vtun and low Vinj respectively. In the adaptive bump
circuit, both processes increase the similarity between Vin and µ. In addition, the
magnitude of the update does not depend on the sign of (Vin −µ) because the differ-
ential input provides common-mode rejection to the input differential pair.

The similarity function, as seen in Fig.1(b), has a Gaussian-like shape. Conse-
quently, we can equate the output current of the bump circuit with the probability of
the input under a distribution parameterized by mean µ:

 ()|in outP V Iµ = (3)

In addition, increasing the similarity between Vin and µ is equivalent to increasing
P(Vin |µ). Consequently, the adaptive bump circuit adapts to maximize the likelihood
of the present input under the circuit’s probability distribution.

3 The bump mixture model

We now describe the computations and learning rule implemented by the bump mix-
ture model. A mixture model is a general class of statistical models that approxi-
mates the probability of an analog input as the weighted sum of probability of the
input under several simple distributions. The bump mixture model comprises a set
of Gaussian-like probability density functions, each parameterized by a mean vec-
tor, µµµµi. Denoting the jth dimension of the mean of the ith density as µij , we express
the probability of an input vector x as:

V in −V in

V casc

Iout

Vb Vw−
V fg1 V fg2

V1
V2

V fg1
V fg2

V2 V1

C 1 C 2

V bV tun V tun

M 1 M 2

M 3 M 4

M 5 M 6

(a)

V in jV inj

(b)

Vw+

-0.4 0

8

10

6

4

2

0 -0.2 0.2 0.4
Vin

I ou
t (

nA
)

bump circuit's transfer function for three µ's

µ1
µ2 µ3

(c)

Figure 1. (a-b) The adaptive bump
circuit. (a) The original bump cir-
cuit augmented by capacitors C1
and C2, and cascode transistors
(driven by Vcasc). (b) The adapta-
tion subcircuit. M3 and M4 control
injection on the floating-gates and
M5 and M6 control tunneling. (b)
Measured output current of a bump
circuit for three programmed
memories.

 () () () () ()()1/ | 1/ |j iji i j
P N P i N P x µ= =� � ∏x x (4)

where N is the number of densities in the model and i denotes the ith density. P(x|i)
is the product of one-dimensional densities P(xj|µij) that depend on the jth dimension
of the ith mean, µij . We derive each one-dimensional probability distribution from
the output current of a single bump circuit. The bump mixture model makes two
assumptions: (1) the component densities are equally likely, and (2) within each
component density, the input dimensions are independent and have equal variance.
Despite these restrictions, this mixture model can, in principle, approximate any
probability density function [1].

The bump mixture model adapts all µµµµi to maximize the likelihood of the training
data. Learning in the bump mixture model is based on the E-M algorithm, the stan-
dard algorithm for training Gaussian mixture models. The E-M algorithm comprises
two steps. The E-step computes the conditional probability of each density given the
input, P(i|x). The M-step updates the parameters of each distribution to increase the
likelihood of the data, using P(i|x) to scale the magnitude of each parameter update.
In the online setting, the learning rule is:

() ()

()
()log | log ||

(|)
|

j ij j ij

ij
ij ijk

P x P xP i
P i

P k

µ µ
µ η η

µ µ
∂ ∂

∆ = =
∂ ∂�

x
x

x
 (5)

where η is a learning rate and k denotes component densities. Because the adaptive
bump circuit already adapts to increase the likelihood of the present input, we ap-
proximate E-M by modulating injection and tunneling in the adaptive bump circuit
by the conditional probability:

 () ()|ij j ijP i f xµ η µ∆ = −x (6)

where f() is the parameter update implemented by the bump circuit. We can modu-
late the learning update in (6) with other competitive factors instead of the condi-
tional probability to implement a variety of learning rules such as online K-means.

4 Si l icon implementation

We now describe a VLSI system that implements the silicon mixture model. The
high level organization of the system detailed in Fig.2, is similar to VLSI vector
quantization systems. The heart of the mixture model is a matrix of adaptive bump
circuits where the ith row of bump circuits corresponds to the ith component density.
In addition, the periphery of the matrix comprises a set of inhibitory circuits for per-
forming probability estimation, inference, quantization, and generating feedback for
learning.

We send each dimension of an input x down a single column. Unity-gain inverting
amplifiers (not pictured) at the boundary of the matrix convert each single ended
voltage input into a differential signal. Each bump circuit computes a current that
represents (P(xj|µij))

σ, where σ is the common variance of the one-dimensional den-
sities. The mixture model computes P(x|i) along the ith row and inhibitory circuits
perform inference, estimation, or quantization. We utilize translinear devices [3] to
perform all of these computations. Translinear devices, such as the subthreshold
MOSFET and bipolar transistor, exhibit an exponential relationship between the
gate-voltage and source current. This property allows us to establish a power-law
relationship between currents and probabilities (i.e. a linear relationship between
gate voltages and log-probabilities).

We compute the multiplication of the probabilities in each row of Fig.2 as addition
in the log domain using the circuit in Fig.3(a). This circuit first converts each bump
circuit’s current into a voltage using a diode (e.g. M1). M2’s capacitive divider com-
putes Vavg as the average of the scalar log probabilities, logP(xj|µij):

 () ()/ log |avg j ijj
V N P xσ µ= � (7)

where σ is the variance, N is the number of input dimensions, and voltages are in
units of κ/Ut (Ut is the thermal voltage and κ is the transistor-gate coupling coeffi-
cient). Transistors M2- M5 mirror Vavg to the gate of M5. We define the drain voltage
of M5 as log P(x|i) (up to an additive constant) and compute:

 ()() () () ()()1 2 1 2

1 1
log | log |avg j ijj

C C C C

C C NP i V P x k
σ

µ
+ +

= = +�x (8)

where k is a constant dependent on Vg (the control gate voltage on M5), and C1 and
C2 are capacitances. From eq.8 we can derive the variance as:

 ()1 1 2/NC C Cσ = + (9)

The system computes different output functions and feedback signals for learning by
operating on the log probabilities of eq.8. Fig.3(b) demonstrates a circuit that com-
putes P(i|x) for each distribution. The circuit is a k-input differential pair where the
bias transistor M0 normalizes currents representing the probabilities P(x|i) at the ith
leg. Fig.3(c) demonstrates a circuit that computes P(x). The ith transistor exponenti-
ates logP(x|i), and a single wire sums the currents. We can also apply other inhibi-
tory circuits to the log probabilities such as winner-take-all circuits (WTA) [13] and
resistive networks [14]. In our fabricated chip, we implemented probability estima-
tion,conditional probability computation, and WTA. The WTA outputs the index of
the most likely component distribution for the present input, and can be used to im-
plement vector quantization and to produce feedback for an online K-means learn-
ing rule.

At each synapse, the system combines a feedback signal, such as the conditional
probability P(i|x), computed at the matrix periphery, with the adaptive bump circuit
to implement learning. We trigger adaptation at each bump circuit by a rate-coded
spike signal generated from the inhibitory circuit’s current outputs. We generate this
spike train with a current-to-spike converter based on Lazzaro’s low-powered spik-
ing neuron [15]. This rate-coded signal toggles Vtun and Vinj at each bump circuit.
Consequently, adaptation is proportional to the frequency of the spike train, which
is in turn a linear function of the inhibitory feedback signal. The alternative to the
rate code would be to transform the inhibitory circuit’s output directly into analog

Inh()

Inh()

O
utput

x1 x2 xn

P(x|µ11) P(x|µ12) P(x|µ1n)

P(x|µ21) P(x|µ22) P(x|µ2n)

P(x|µµµµ1)

P(x|µµµµ2)

Vtun,Vinj

Figure 2. Bump mixture
model architecture. The
system comprises a ma-
trix of adaptive bump
circuits where each row
computes the probability
P(x|µµµµi). Inhibitory cir-
cuits transform the out-
put of each row into
system outputs. Spike
generators also trans-
form inhibitory circuit
outputs into rate-coded
feedback for learning.

Vtun and Vinj signals. Because injection and tunneling are highly nonlinear functions
of Vinj and Vtun respectively, implementing updates that are linear in the inhibitory
feedback signal is quite difficult using this approach.

5 Experimental Results and Conclusions

We fabricated an 8 x 8 mixture model (8 probability distribution functions with 8
dimensions each) in a TSMC 0.35µm CMOS process available through MOSIS, and
tested the chip on synthetic data and a handwritten digits dataset. In our tests, we
found that due to a design error, one of the input dimensions coupled to the other
inputs. Consequently, we held that input fixed throughout the tests, effectively re-
ducing the input to 7 dimensions. In addition, we found that the learning rule in eq.6
produced poor performance because the variance of the bump distributions was too
large. Consequently, in our learning experiments, we used the hard winner-take-all
circuit to control adaptation, resulting in a K-means learning rule. We trained the
chip to perform different tasks on handwritten digits from the MNIST dataset [16].
To prepare the data, we first perform PCA to reduce the 784-pixel images to seven-
dimensional vectors, and then sent the data on-chip.

We first tested the circuit on clustering handwritten digits. We trained the chip on
1000 examples of each of the digits 1-8. Fig.4(a) shows reconstructions of the eight
means before and after training. We compute each reconstruction by multiplying the
means by the seven principal eigenvectors of the dataset. The data shows that the
means diverge to associate with different digits. The chip learns to associate most
digits with a single probability distribution. The lone exception is digit 5 which
doesn’t clearly associate with one distribution. We speculate that the reason is that
3’s, 5’s, and 8’s are very similar in our training data’s seven-dimensional represen-
tation. Gaussian mixture models trained with the E-M algorithm also demonstrate
similar results, recovering only seven out of the eight digits.

We next evaluated the same learned means on vector quantization of a set of test
digits (4400 examples of each digit). We compare the chip’s learned means with
means learned by the batch E-M algorithm on mixtures of Gaussians (with σ=0.01),
a mismatch E-M algorithm that models chip nonidealities, and a non-adaptive base-
line quantizer. The purpose of the mismatch E-M algorithm was to assess the effect
of nonuniform injection and tunneling strengths in floating-gate transistors. Because
tunneling and injection magnitudes can vary by a large amount on different floating-
gate transistors, the adaptive bump circuits can learn a mean that is somewhat off-
center. We measured the offset of each bump circuit when adapting to a constant
input and constructed the mismatch E-M algorithm by altering the learned means
during the M-step by the measured offset. We constructed the baseline quantizer by
selecting, at random, an example of each digit for the quantizer codebook. For each
quantizer, we computed the reconstruction error on the digit’s seven-dimensional

Vs Vg

... C1

C2

P(x1|µi1)
σ

(a) (b) (c)

M1 M2

M3 M4

Vavg VavgM5

...

Vb M0

...

P(i|x)
logP(x|i)

...

P(x)

Vs

...
logP(x|i)

P(xn|µin)
σ

Figure 3. (a) Circuit for computing logP(x|i). (b) Circuit for computing P(i|x). The
current through the ith leg represents P(i|x). (c) Circuit for computing P(x).

representation when we represent each test digit by the closest mean. The results in
Fig.4(b) show that for most of the digits the chip’s learned means perform as well as
the E-M algorithm, and better than the baseline quantizer in all cases. The one digit
where the chip’s performance is far from the E-M algorithm is the digit “1”. Upon
examination of the E-M algorithm’s results, we found that it associated two means
with the digit “1”, where the chip allocated two means for the digit “3”. Over all the
digits, the E-M algorithm exhibited a quantization error of 9.98, mismatch E-M
gives a quantization error of 10.9, the chip’s error was 11.6, and the baseline quan-
tizer’s error was 15.97. The data show that mismatch is a significant factor in the
difference between the bump mixture model’s performance and the E-M algorithm’s
performance in quantization tasks.

Finally, we use the mixture model to classify handwritten digits. If we train a sepa-
rate mixture model for each class of data, we can classify an input by comparing the
probabilities of the input under each model. In our experiment, we train two sepa-
rate mixture models: one on examples of the digit 7, and the other on examples of
the digit 9. We then apply both mixtures to a set of unseen examples of digits 7 and
9, and record the probability score of each unseen example under each mixture
model. We plot the resulting data in Fig.4(c). Each axis represents the probability
under a different class. The data show that the model probabilities provide a good
metric for classification. Assigning each test example to the class model that outputs
the highest probability results in an accuracy of 87% on 2000 unseen digits. Addi-
tional software experiments show that mixtures of Gaussians (σ=0.01) trained by
the batch E-M algorithm provide an accuracy of 92.39% on this task.

Our test results show that the bump mixture model’s performance on several learn-
ing tasks is comparable to standard mixtures of Gaussians trained by E-M. These
experiments give further evidence that floating-gate circuits can be used to build
effective learning systems even though their learning rules derive from silicon phys-
ics instead of statistical methods. The bump mixture model also represents a basic
building block that we can use to build more complex silicon probability models

(a) (b)

av
er

ag
e

sq
ua

re
d

qu
an

tiz
at

io
n

er
ro

r

digit
chip

baseline

E-M
E-M/mismatch

1
2

3
4

5
6

7
8

0

10

20
before

after

 Figure 4. (a) Reconstruction of chip
means before and after training with
handwritten digits. (b) Comparison of
average quantization error on unseen
handwritten digits, for the chip’s
learned means and mixture models
trained by standard algorithms. (c) Plot
of probability of unseen examples of 7’s
and 9’s under two bump mixture models
trained solely on each digit.

Probability under 9's model (µA)P
ro

ba
bi

lit
y

un
de

r
7'

s
m

od
el

 (
µA

)

(c)

0.5
0.5 1 1.5 2 2.5

1

1.5

2

2.5 7 +
9 o

over analog variables. This work can be extended in several ways. We can build
distributions that have parameterized covariances in addition to means. In addition,
we can build more complex, adaptive probability distributions in silicon by combin-
ing the bump mixture model with silicon probability models over discrete variables
[5-7] and spike-based floating-gate learning circuits [4].

Ackno w ledg ments

This work was supported by NSF under grants BES 9720353 and ECS 9733425, and
Packard Foundation and Sloan Fellowships.

References

[1] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, UK: Clarendon
Press, 1995.

[2] L. R. Rabiner, "A tutorial on hidden Markov models and selected applications in
speech recognition," Proceedings of the IEEE, vol. 77, pp. 257-286, 1989.

[3] B. A. Minch, "Analysis, Synthesis, and Implementation of Networks of Multiple-
Input Translinear Elements," California Institute of Technology, 1997.

[4] C.Diorio, D.Hsu, and M.Figueroa, "Adaptive CMOS: from biological inspiration to
systems-on-a-chip," Proceedings of the IEEE, vol. 90, pp. 345-357, 2002.

[5] T. Gabara, J. Hagenauer, M. Moerz, and R. Yan, "An analog 0.25 µm BiCMOS tail-
biting MAP decoder," IEEE International Solid State Circuits Conference (ISSCC),
2000.

[6] J. Dai, S. Little, C. Winstead, and J. K. Woo, "Analog MAP decoder for (8,4) Ham-
ming code in subthreshold CMOS," Advanced Research in VLSI (ARVLSI), 2001.

[7] M. Helfenstein, H.-A. Loeliger, F. Lustenberger, and F. Tarkoy, "Probability propaga-
tion and decoding in analog VLSI," IEEE Transactions on Information Theory, vol.
47, pp. 837-843, 2001.

[8] W. C. Fang, B. J. Sheu, O. Chen, and J. Choi, "A VLSI neural processor for image
data compression using self-organization neural networks," IEEE Transactions on
Neural Networks, vol. 3, pp. 506-518, 1992.

[9] J. Lubkin and G. Cauwenberghs, "A learning parallel analog-to-digital vector quan-
tizer," Journal of Circuits, Systems, and Computers, vol. 8, pp. 604-614, 1998.

[10] T. Delbruck, "Bump circuits for computing similarity and dissimilarity of analog volt-
ages," California Institute of Technology, CNS Memo 26, 1993.

[11] M. Lenzlinger, and E. H. Snow, "Fowler-Nordheim tunneling into thermally grown
SiO2," Journal of Applied Physics, vol. 40, pp. 278-283, 1969.

[12] E. Takeda, C. Yang, and A. Miura-Hamada, Hot Carrier Effects in MOS Devices. San
Diego, CA: Academic Press, 1995.

[13] J. Lazzaro, S. Ryckebusch, M. Mahowald, and C. A. Mead, "Winner-take-all networks
of O(n) complexity," in Advances in Neural Information Processing, vol. 1, D. Tour-
estzky, Ed.: MIT Press, 1989, pp. 703-711.

[14] K. Boahen and A. Andreou, "A contrast sensitive silicon retina with reciprocal syn-
apses," in Advances in Neural Information Processing Systems 4, S. H. J. Moody, and
R. Lippmann, Ed.: MIT Press, 1992, pp. 764-772.

[15] J. Lazzaro, "Low-power silicon spiking neurons and axons," IEEE International Sym-
posium on Circuits and Systems, 1992.

[16] Y. Lecun, "The MNIST database of handwritten digits,
http://yann_lecun.com/exdb/mnist."

