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Abstract

We propose in this paper a probabilistic approach for adaptive inference
of generalized nonlinear classification that combines the computational
advantage of a parametric solution with the flexibility of sequential sam-
pling techniques. We regard the parameters of the classifier as latent
states in a first order Markov process and propose an algorithm which
can be regarded as variational generalization of standard Kalman filter-
ing. The variational Kalman filter is based on two novel lower bounds
that enable us to use a non-degenerate distribution over the adaptation
rate. An extensive empirical evaluation demonstrates that the proposed
method is capable of infering competitive classifiers both in stationary
and non-stationary environments. Although we focus on classification,
the algorithm is easily extended to other generalized nonlinear models.

1 Introduction

The demand for adaptive learning methods, e.g. for use in brain computer interfaces (BClIs)
[15] has recently triggered a considerable interest in such algorithms. We may approach
adaptive learning with algorithms that were designed for stationary environments and use
learning rates to make these methods adaptive. These approaches can be traced back to
early work on learning algorithms (e.g. [1]). A more recent account to this approach is
[17], who combines the probabilistic method of sequential variational inference ([9]) and a
forgetting factor to obtain an adaptive learning method. Probabilistic or Bayesian methods
allow also for a completely different interpretation of adaptive learning. We may regard the
model coefficients as latent (i.e. unobserved) states of a first order Markov process.
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The posterior distribution, p(w,—_1|Dp—1), at state n — 1 summarizes all information ob-
tained about the model. This posterior and the conditional distribution, p(w ,|wn—1, AI),
represent the prior for the following state. The conditional distribution can be thought of as

additive process or state noise with precision A. Predictions are obtained by a probabilistic
observation model p(y, |z, w,). Using this model, we obtain an appropriate adaptation



rate by hierarchical Bayesian inference of the process noise precision A. Equation (1)
suggests that we may interpret adaptive Bayesian inference as generalization of the well
known Kalman filter ([12]). This view of adaptive learning has been used by [6], who use
extended Kalman filtering to obtain a Laplace approximation of the posterior over w,, and
maximum likelihood Il ([3]) for inference of the adaptation rate. Another generalization of
Kalman filtering are the recently quite popular particle filters (e.g. [7]). Being Monte Carlo
methods, particle filters have over Laplace approximations the advantage of much greater
flexibility. This comes however at the expense of a higher representational and computa-
tional complexity. To combine the flexibility of particle filtering with the computational
advantage of parametric methods, we propose a variational approximation (e.g. [11] , [2]
and [8]) for inference of the Markov process in Equation (1). Unlike maximum likelihood
I1, the variational Kalman filter allows us to have a non degenerate distribution over the
process noise precision. We derive in this paper a variational Kalman filter classifier and
show with an extensive empirical evaluation that the resulting classifiers obtain excellent
generalization accuracies both in stationary and non-stationary domains.

2 Methods

2.1 A generalized nonlinear classifier

Classification is a prediction problem, where some regressor, x,,, predicts the expectation
of a response variable y,,. Since a k categorical polytomous solution is easily recovered
from k — 1 dichotomous solutions ([16], pages 44-45), we restrict all further discussions
to dichotomos classification using 0/1 responses. We thus have only one degree of free-
dom and predict the binary probability, P(y, = 0|w,z,), which depends on the model
parameters w. To obtain a flexible discriminant, we use a generalized nonlinear model, i.e.
a radial basis function (RBF) network ([14] and [5]), with logistic output transformation
(Equation (3)).
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The classifier has a nonlinear feature space ¢,, which for reasons of adaptivity depends
on w, and a linear mapping into latent space n,. We allow for Gaussian basis func-
tions, i.e. @p(x,) = exp(—0.5k(xLp,)?) or thin plate splines, i.e. ¢x(x,) =
|z g, | log(|zX py |). Both basis functions are parameterized by their center locations g,
Since we want to have a simple unimodal posterior over model parameters, we update the
coefficients of the basis set w,, randomly according to a Metropolis Hastings kernel ([13])
and solve for the conditional posterior p(w|w,,, D,,) analytically.

2.2 The variational Kalman filter

In order to ease discussion of adaptive inference, we illustrate the dependencies implied
by Equation (1) in figure 1 as a directed acyclic graph (DAG). In accordance with Kalman
filtering, we assume a Gaussian posterior at time n—1 with mean a,,_; and precision A,
and zero mean Gaussian state noise with isotropic precision AI. Inference of X is based on
a “flat” proper Gamma prior specified by parameters « and 5. In order to obtain reasonable
posteriors over \, we follow [10] and assume constant adaptation within a window of size
N. The proposed variational Bayesian approach ignores the anti-causal information flow
and is thus based on maximizing a lower bound on the logarithmic model evidence of a
windowed Kalman filter. Following these assumptions, we obtain the expression for the
log evidence in Equation (4) by substituting the generalized nonlinear model (Equations
(2) to (3)) into the formulation of adaptive Bayesian learning (1). We have then to make all
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Figure 1: This figure illustrates adaptive inference as a directed acyclic graph. The coef-
ficients of the classifier, w,,, are assumed to be Gaussian, following a first order Markov
process. The hyper parameter A is given a Gamma prior specified by parameters o and 5.

distributions explicit and integrate over all model coefficients, which is done analytically
over all prior states w,, 1.
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The structure of Equation (4) suggests that the approximate posterior @ (w,,) can be chosen
to be Gaussian and the approximate posterior Q(A) can be chosen to be a Gamma distribu-
tion. These functional forms do however not simply result from a mean field approximation
of the posterior as Q(\) Hle Q(w,,). In order to obtain the required conjugacy, we have
to use lower bounds for the probability of the target label, (1+exp((2y,—1)@. w,))~" and
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2.3 Variational lower bounds

In order to achieve conjugacy with a Gaussian distribution, we use the lower bound for the
logistic sigmoid proposed in [9]
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in which &, are the variational parameters of a locally linear expansion in ((2y, —

1)¢an)2 of every prediction contained in the window. In order to get expressions that
are conjugate with a Gamma distribution over the process noise precision A, we derive two
novel lower bounds. Assuming a d-dimensional parameter vector w,,, we get
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which are expressions in A and log(\) and thus conjugate with a Gamma distribution. Both
bounds are expanded in the identical parameter v which is justified since both are linear
expansions in (A — v) and maximization must thus lead to identical values. Using these

lower bounds together with a mean field assumption, Q()\) HnN:1 Q(wy), and the usual
Jensens inequalities, we immediately obtain a negative free energy as lower bound of the
log evidence in Equation (4). For reasons of brevity we do not include this expression here.

2.4 Parameter updates

In order to distinguish between the parameters of the prior and posterior distributions, we
henceforth denote the latter with superscript €. Inference requires to maximize the negative
free energy with respect to all variational parameters. These are the coefficients of the N
Gaussian distributions, Q(w,,), the N parameters in the bounds of the logistic sigmoid,
&5, the coefficients of the Gamma posterior over the noise process precision, Q(A) and
the parameter in the Gamma conjugacy bounds, ». Maximization with respect to Q (w,)

results in a Gaussian distribution with precision A9 and mean <.
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Maximization with respect to @ (\) results in a Gamma distribution with location parameter
a® and scale parameter 3<.
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According to [9], maximization with respect to &,, leads to

b =\ ($102)? + 1A, (10)
Maximization with respect to the variational parameter v leads for both bounds to
Q
v=2". (11)
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In order to allow the basis mapping in Equation (2) to track modifications in the input data
distributions, we propose the perturbation w!, = w,, + &, where § ~ N(0, A) is drawn
from a Gaussian and accept the proposal according to probability
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If we assume that the negative free energy describes the log evidence exactly, this is a
Metropolis Hastings kernel ([13]) that leaves the marginal posterior p(w,|D,,) invariant.
We could thus represent the marginal posterior with random samples. For computational
reasons however, we use the scheme only for random updates of w,,. An algorithm for pa-
rameter inference will first propose a random update of w, and then iterate maximizations
according to Equation (8) to Equation (11) until we observe convergence of the negative
free energy. Alternatively we can use a fixed number of iterations, for which our experi-
ments suggest that 15 iterations suffice.
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2.5 Model predictions

Since we do not know the response when predicting, we have to sum the negative free
energy over y,. This results in a new expression for u‘;ﬁ which we obtain from Equation
(8) by dropping the term that depends on y,,. Due to the dependency on &,,, maximization
with respect to @ (w,,) has to alternate with maximization with respect to &,, the latter
again being done according to Equation (10). Having reached convergence, we obtain an
approximate log probability for y,, by taking the expectation of the bound of the sigmoid
in Equation (5) with respect to Q(w,,) and maximizing with respect to &,.
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Exponentiating the approximate log probabilities results in a sub probability measure over
Yn With 3° P(yn|¢,) < 1, with the difference 1 — 2y P(yn|¢n) representing an
additional uncertainty about y,,, introduced by the apprOX|mat|on of the logistic sigmoid.

3 Experiments

All experiments reported in this section use a model with 10 Gaussian basis functions with
precision k = 0.25. For updating the basis, we use zero mean Gaussian random variates
with precision A = 1000Z. The initial prior over parameters is a zero mean Gaussian
with isotropic precision Ag = 0.1I. For maximizing the negative free energy we use 15
iterations. The first experiment aims at obtaining a parametrization for «, # and the window
length, IV, that allows us to make inferences of the process noise ) that are insensitive to the
actual “drift” of the problem. We use for that purpose the test set from the synthetic problem
in [16]%. The samples of this balanced problem are reshuffled such that consecutive class
labels differ. In order to get a non-stationarity, we swap the class labels in the second half
of the data. The results shown in figure 2 are obtained with o = 0.01 and 3 = 10~
We propose these settings together with a window size N = 10, because this is a good
compromise between fast tracking and high stationary accuracy.

We are now ready to compare the algorithm with an equivalent static classifier using sev-
eral public data sets and classification of single trial EEG which, due to learning effects in
humans, is known to be non-stationary. In order to avoid that the model has an influence on

1This data set can be obtained at http://www.stats.ox.ac.uk/pub/PRNNY/.
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Figure 2: Results obtained on Ripleys’ synthetic data set with swapped class labels after
sample 500. The top graph shows the expected value of the precision of the noise process,

<A >omn= g—§ for different window sizes (i.e. for different numbers of samples used

for infering the adaptation rate). The bottom graph shows the instantaneous generalization
accuracy estimated in a window of size 30. The prior over X is a Gamma distribution with
expectation 100 and variance 10°.

the results, we compare the generalization accuracy of the variational Kalman filter classi-
fier (vkf) with an identical non-adaptive model. Inference of the static model is based on
sequential variational learning ([9]). We obtain sequential variational inference (svi) from
our approach by setting A in Equation (1) to infinity. The comparisons are evaluated for
significance using McNemar’s test, a method for analyzing paired results that is suggested
in [16]. The comparison uses vehicle data?, satellite image data, Johns Hopkins University
ionosphere data, balance scale weight and distance data and the wine recognition database,
all taken from the StatLog database which is available at the UCI repository ([4]). The
satellite image data set is used as is provided with 4435 samples in the training and 2000
samples in the test set. Vehicle data are merged such that we have 500 samples in the train-
ing and 252 in the test set. The other data were split into two equal sized data sets, which
were both used as training and independent test sets respectively. We also use the pima
diabetes data set from [16]2. Table 1 compares the generalization accuracies (in fractions)
obtained with the variational Kalman filter with generalization accuracies obtained with
sequential variational inference. The probability of the null hypothesis, P,.;, that both
classifiers are equal suggests that only the differences for the Balance scale and the Pima
Indian data sets are significant, with either method being better in one case. Since the gen-
eralization accuracies of both methods are almost identical, we conclude that if applied to

2\/ehicle data was donated to StatLog by the Turing Institute Glasgow, Scotland.
3This data set can be obtained at http://www.stats.ox.ac.uk/pub/PRNNY/.



Generalization results

Data sets VKT Vi P

J.H.U. ionosphere 0.87 | 0.88 0.41
Satellite image 08110381 0.29
Balance scale 0.89 | 0.87 0.03
Pima diabetes 0.76 | 0.80 0.03
Vehicle 0.77 1 0.77 0.42
Wine 0.97 | 0.95 0.25

Table 1: Generalization accuracies obtained with the variational Kalman filter (vkf) and
sequential variational inference (svi).

Cognitive task C\i‘/ﬁ?eralgz\;a:tlon r;:li!:s
rest/move, no feedback 0.69 | 0.61 0.00
rest/move, feedback 0.71 1 0.70 0.39
move/math, no feedback | 0.69 | 0.62 0.00
move/math, feedback 0.64 | 0.60 0.00

Table 2: Generalization accuracies obtained for classification of single trial EEG show that
the variational Kalman filter significantly improves the results in three out of four cases.

stationary problems, we may expect the variational Kalman filter to obtain generalization
accuracies that are similar to those of static methods.

In order to assess the variational Kalman filter on a non-stationary problem, we apply it to
classification of single trial EEG, a problem which is part of BCIs. The data for this exper-
iment has been obtained from eight untrained subjects that perform two different task com-
binations (rest EEG vs. imagined movements and imagined movements vs. a mathematical
task), once without and once with visual feedback. For one cognitive experiment each pair
of tasks is repeated ten times. We classify on a one second basis an thus have per subject
and task combination 200 samples. The regressors in this experiment are three reflection
coefficients (a parametrization of autoregressive models, see e.g. [18]). The comparison
in table 2 reports within subject results obtained by two fold cross testing. Using half of
the data, we allow for convergence of the methods before estimating the generalization ac-
curacy on the other half of the data. The generalization accuracies in table 2 are averaged
across subjects. We obtain in three out of four experiments a significant improvement with
the variational Kalman filter.

4 Discussion

We propose in this paper a parametric approach for adaptive inference of nonlinear clas-
sification. Our algorithm can be regarded as variational generalization of Kalman filtering
which we obtain by using two novel lower bounds that allow us to have a non-degenerate
distribution over the adaptation rate. Inference is done by iteratively maximizing a lower
bound of the log evidence. As a result we obtain an approximate posterior that is a product
of a multivariate Gaussian and a Gamma distribution. Our simulations have shown that the
approach is capable of infering classifiers that have good generalization performance both
in stationary and non-stationary domains. In situations with moderate sized latent spaces,
e.g. in the BCI experiments reported above, prediction and parameter updates can be done
in real time on conventional PCs. Although we focus on classification, the algorithm is



based on general ideas and thus easily applicable to other generalized nonlinear models.
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