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Abstract

AdaBoost [3] minimizes an upper error bound which is an exponential
function of the margin on the training set [14]. However, the ultimate
goal in applications of pattern classification is always minimum error
rate. On the other hand, AdaBoost needs an effective procedure for
learning weak classifiers, which by itself is difficult especially for high
dimensional data. In this paper, we present a novel procedure, called
FloatBoost, for learning a better boosted classifier. FloatBoost uses a
backtrack mechanism after each iteration of AdaBoost to remove weak
classifiers which cause higher error rates. The resulting float-boosted
classifier consists of fewer weak classifiers yet achieves lower error rates
than AdaBoost in both training and test. We also propose a statistical
model for learning weak classifiers, based on a stagewise approximation
of the posterior using an overcomplete set of scalar features. Experi-
mental comparisons of FloatBoost and AdaBoost are provided through a
difficult classification problem, face detection, where the goal is to learn
from training examples a highly nonlinear classifier to differentiate be-
tween face and nonface patterns in a high dimensional space. The results
clearly demonstrate the promises made by FloatBoost over AdaBoost.

1 Introduction

Nonlinear classification of high dimensional data is a challenging problem. While design-
ing such a classifier is difficult, AdaBoost learning methods, introduced by Freund and
Schapire [3], provides an effective stagewise approach: It learns a sequence of more easily
learnable “weak classifiers”, and boosts them into a single strong classifier by a linear com-
bination of them. It is shown that the AdaBoost learning minimizes an upper error bound
which is an exponential function of the margin on the training set [14].

Boosting learning originated from the PAC (probably approximately correct) learning the-
ory [17, 6]. Given that weak classifiers can perform slightly better than random guessing
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on every distribution over the training set, AdaBoost can provably achieve arbitrarily good
bounds on its training and generalization errors [3, 15]. It is shown that such simple weak
classifiers, when boosted, can capture complex decision boundaries [1].

Relationships of AdaBoost [3, 15] to functional optimization and statistical estimation are
established recently. A number of gradient boosting algorithms are proposed [4, 8, 21]. A
significant advance is made by Friedman et al. [5] who show that the AdaBoost algorithms
minimize an exponential loss function which is closely related to Bernoulli likelihood.

In this paper, we address the following problems associated with AdaBoost:

1. AdaBoost minimizes an exponential (some another form of ) function of the mar-
gin over the training set. This is for convenience of theoretical and numerical
analysis. However, the ultimate goal in applications is always minimum error
rate. A strong classifier learned by AdaBoost may not necessarily be best in this
criterion. This problem has been noted, eg by [2], but no solutions have been
found in literature.

2. Aneffective and tractable algorithm for learning weak classifiers is needed. Learn-
ing the optimal weak classifier, such as the log posterior ratio given in [15, 5],
requires estimation of densities in the input data space. When the dimensionality
is high, this is a difficult problem by itself.

We propose a method, called FloatBoost (Section 3), to overcome the first problem. Float-
Boost incorporates into AdaBoost the idea of Floating Search originally proposed in [11]
for feature selection. A backtrack mechanism therein allows deletion of those weak classi-
fiers that are non-effective or unfavorable in terms of the error rate. This leads to a strong
classifier consisting of fewer weak classifiers. Because deletions in backtrack is performed
according to the error rate, an improvement in classification error is also obtained. To solve
the second problem above, we provide a statistical model (Section 4) for learning weak
classifiers and effective feature selection in high dimensional feature space. A base set of
weak classifiers, defined as the log posterior ratio, are derived based on an overcomplete
set of scalar features. Experimental results are presented in (Section 5) using a difficult
classification problem, face detection. Comparisons are made between FloatBoost and Ad-
aBoost in terms of the error rate and complexity of boosted classifier. Results clear show
that FloatBoost yields a strong classifier consisting of fewer weak classifiers yet achieves
lower error rates.

2 AdaBoost Learning

In this section, we give a brief description of AdaBoost algorithm, in the notion of Real-
Boost [15, 5], as opposed to the original discrete AdaBoost [3].

For two class problems, a set of N labelled training examples is given as
(z1,91),---,(zN,yn), Where y; € {+1,—1} is the class label associated with example
x; € R™. A stronger classifier is a linear combination of M weak classifiers

M
Hy () = ) hn(a) (1)

In this real version of AdaBoost, the weak classifiers can take a real value, h,,(z) € R,
and have absorbed the coefficients needed in the discrete version (there, h,,,(z) € —1,+1).
The class label for z is obtained as H (z) = sign[H ()] while the magnitude |H s (z)|
indicates the confidence. Every training example is associated with a weight. During the
learning process, the weights are updated dynamically in such a way that more emphasis is



placed on hard examples which are erroneously classified previously. It is important for the
original AdaBoost. However, recent studies [4, 8, 21] show that the artificial operation of
explicit re-weighting is unnecessary and can be incorporated into a functional optimization
procedure of boosting.

0. (Input)
(1) Training examples Z = {(z1, y1),..., (z~,y~n)},
where N = a + b; of which a examples havey; = +1
and b examples havey; = —1;
(2) The maximum number M, Of weak classifi ersto be combined;
1. (Initialization)
w® = L for those exampleswith y; = +1 or

7
50) = 217; for those examples with y; = —1.

w

2. (Forward | nclusion)
while M < Mmax
DM« M+1;
(2) Choose har according to Eq.4;
3) Updateng) < exp[—y;Hu (z:)], and normalizeto ), wl(M) =1;
3. (Output)
H(z) = sign[zi\f=1 hm (2)].

Figure 1: RealBoost Algorithm.

An error occurs when H(z) # y, or yHp(z) < 0. The “margin” of an example (z,y)
achieved by h(z) € R on the training set examples is defined as yh(x). This can be consid-
ered as a measure of the confidence of the h’s prediction. The upper bound on classification
error achieved by H ), can be derived as the following exponential loss function [14]

J(Hy) =) e viflm(e) )
AdaBoost construct h(z) by stage-wise minimization of Eq.(2). Given the current

Hy_1(z) = E%;ll hm(x), the best hps(x) for the new strong classifier Hys(xz) =
Hyr—1(z) + har(z) is the one which leads to the minimum cost

hy = argmhiin J(Hy—1(z) + hi(z)) 3)
It is shown in [15, 5] that the minimizer is
= (M-1)
1yog Py =+11z,0)
2 °Py=-1|z,wM-1)

where w(M=1) are the weights given at time M. Using P(y | z,w) = P(z | y,w)P(y)
and letting

b (@) (4)

_ 1 pl@|y=+1w)
) = 5% ey =L ©
_ L[ Ply=+1)
T = §|:10gm:| (6)
we arrive
hM(.Z') = LM(m)—}—T (7)

The half log likelihood ratio L(z) is learned from the training examples of the two classes,
and the threshold T is determined by the log ratio of prior probabilities. 7" can be adjusted



to balance between detection rate and false alarm (ROC curve). The algorithm is shown
in Fig.1 (Note: Re-weight formula in this description is equivalent to the multiplicative
rule in the original form of AdaBoost [3, 15]). In Section 4, we will present an model for
approximating P(z | y, w™—1),

3 FloatBoost Learning

FloatBoost backtracks after the newest weak classifier h s is added and delete unfavorable
weak classifiers h,,, from the ensemble (1), following the idea of Floating Search [11].
Floating Search [11] is originally aimed to deal with non-monotonicity of straight sequen-
tial feature selection, non-monotonicity meaning that adding an additional feature may lead
to drop in performance. When a new feature is added, backtracks are performed to delete
those features that cause performance drops. Limitations of sequential feature selection
is thus amended, improvement gained with the cost of increased computation due to the
extended search.

0. (Input)
(1) Training examples Z = {(z1,¥1),---, (z~n,yn)},
where N = a + b; of which a examples have
yi = +1 and b examples have y; = —1;
(2) The maximum number M, Of weak classifi ers;
(3) Theerror rate e(Har ), and the acceptance threshold ™ .
1. (Initialization)
(1) w!® = L for those exampleswith y; = +1 or
w® = L for those examples with y; = —1;
(2) e —max-value (form = 1,. .., Mmax),
M =0,Ho ={}.
2. (Forward Inclusion)
QM+ M+1;
(2) Choose har according to Eq.4;
3) Updatewa) < exp[—y:Hum(x;:)], and normalizeto 3, wa) =1;
@D Hrv =Hm-1 U {hu ) If et > e(Hur), then emin = e(Hwm);
3. (Conditional Exclusion)
(1) h’ = argminpen,, e(Hm — h);
(@ If e(Hy — b)) < €57, then
@ Hu-1=Hm — n;
ety =e(Hu —h),M=M-1,
(b) Hy = EheﬂM h;
(c) goto 3.(1);
(3) ese
@ if M = Mmax or J(Ham) < J*, then goto 4;
(b) wi(M) + exp[—yiHum (z:)]; goto 2.(1);
4. (Output)
H(z) = sign[zh(x)EHM h(z)].

Figure 2: FloatBoost Algorithm.

The FloatBoost procedure is shown in Fig.2 Let H s = {hu, - . ., har} be the so-far-best set

of M weak classifiers; e(H ) be the error rate achieved by H s (z) = 2%21 hm(z) (ora
weighted sum of missing rate and false alarm rate which is usually the criterion in one-class
detection problem); e™i® be the minimum error rate achieved so far with an ensemble of m
weak classifiers.

In Step 2 (forward inclusion), given already selected, the best weak classifier is added one



at a time, which is the same as in AdaBoost. In Step 3 (conditional exclusion), FloatBoost
removes the least significant weak classifier from 7 s, subject to the condition that the
removal leads to a lower error rate i ,. These are repeated until no more removals can
be done. The procedure terminates when the risk on the training set is below J* or the
maximum number M.« iS reached.

Incorporating the conditional exclusion, FloatBoost renders both effective feature selection
and classifier learning. It usually needs fewer weak classifiers than AdaBoost to achieve
the same error rate e.

4 Learning Weak Classifiers

The section presents a method for computing the log likelihood in Eq.(5) required in learn-
ing optimal weak classifiers. Since deriving a weak classifier in high dimensional space is
a non-trivial task, here we provide a statistical model for stagewise learning of weak classi-
fiers based on some scalar features. A scaler feature k of x is computed by a transform from
the n-dimensional data space to the real line, z;(z) € R. A feature can be the coefficient
of, say, a wavelet transform in signal and image processing. If projection pursuit is used as
the transform, z(z) is simply the k-th coordinate of z. A dictionary of K candidate scalar
features can be created Z = {z1(x), ..., zx(x)}. In the following, we use z(,,) to denote
the feature selected in the m-th stage, while z4(x) is the feature computed from z using the
k-th transform.

Assuming that Z is an over-complete basis, a set of candidate weak classifiers for the
optimal weak classifier (7) can be designed in the following way: First, at stage M where
M —1features z(1), 2(2), - - - » 2(m—1) have been selected and the weight is given as wM-1),

we can approximate p(z | y, w(™ 1)) by using the distributions of M features

p(z | y,w(M*I)) ~ p(21),22), - > Z(M—1)5 2k | y,w(Mfl)) (8)
= pley |y, w™ ) pla2) | 95 20y, w™ D) -
p(z(m-1) | Y521, - - .,z(M_2),w(M_1))
Pz | 45 201y, - - > 20—1), WMD) ©)

Because Z is an over-complete basis set, the approximation is good enough for large
enough M and when the M features are chosen appropriately.

Note that p(2(m) | ¥>2(1); - - - » Z(m—1)) IS actually p(z(m) | y, w™ 1)) because w™ con-
tains the information ag)out entire history of w and accounts for the dependencies on
2(1),- - - Z(m—1)- Therefore, we have

p(z |y, w™V) ~ plza) |y, w®) p(ee) |y, w™) - (10)
pzv—1y | ¥, w M D)p(zg |y, wM ) (11)

On the right-hand side of the above equation, all conditional densities are fixed except the
last one p(z | y,w™ D). Learning the best weak classifier at stage M is to choose the
best feature z(r) for 2y, such that J is minimized according to Eq.(3).

The conditional probability densities p(zx | y, w(~1) for the positive class y = +1
and the negative class y = —1 can be estimated using the histograms computed from the
weighted voting of the training examples using the weights w(™—1)_ Let

M 1 p(Zk | Yy = +1 U)( 1))
L( ) xr)= —1 ! 12




and thM) (z) = {LECM) (z) — T}. We can derive the set of candidate weaker classifiers as

HOD = (nM () | Yk} (13)

Recall that the best ks () among all in # (»;_qy for the new strong classifier Hys(z) =
Hpyr1(x) + ha(z) is given by Eq.(3) among all At € (D, for which the optimal
weak classifier has been derived as (7). According the theory of gradient based boosting
[4, 8, 21], we can choose the optimal weak classifier by finding the h s () that best fits the
gradient —V J(Hps—1) where

oJ oJ

FIERRE (%N) (14)
In our stagewise approximation formulation, this can be done by first finding the h s (z) €
H M) that best fits —V.J in direction and then scaling it so that the two has the same
(re-weighted) norm. An alternative selection scheme is simply to choose & so that the
error rate (or some risk), computed from the two histograms p(zx | y = +1,w™ 1) and
p(zx |y = =1, w™-1), is minimized.

VJI(Hy-1) = (

5 Experimental Results

Face Detection The face detection problem here is to classifier an image of standard size
(eg 20x20 pixels) into either face or nonface (imposter). This is essentially a one-class
problem in that everything not a face is a nonface. It is a very hard problem. Learning
based methods have been the main approach for solving the problem , eg [13, 16, 9, 12].
Experiments here follow the framework of Viola and Jones [19, 18]. There, AdaBoost is
used for learning face detection; it performs two important tasks: feature selection from a
large collection features; and constructing classifiers using selected features.

Data Sets

A set of 5000 face images are collected from various sources. The faces are cropped and
re-scaled to the size of 20x20. Another set of 5000 nonface examples of the same size are
collected from images containing no faces. The 5000 examples in each set is divided into
a training set of 4000 examples and a test set of 1000 examples. See Fig.3 for a random
sample of 10 face and 10 nonface examples.

Figure 3: Face (top) and nonface (bottom) examples.

Scalar Features

Three basic types of scalar features zy, are derived from each example, as shown in Fig.4,
for constructing weak classifiers. These block differences are an extended set of steerable
filters used in [10, 20]. There are hundreds of thousands of different z; for admissible
x,y, dx, dy values. Each candidate weak classifier is constructed as the log likelihood ratio
(12) computed from the two histograms p(zy, | y, w™—1) of a scalar feature z;, for the
face (y = +1) and nonface (y = —1) examples (cf. the last part of the previous section).
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Figure 4: The three types of simple Harr wavelet like features z ;) defined on a sub-window
x. The rectangles are of size = x y and are at distances of (dx, dy) apart. Each feature takes
a value calculated by the weighted (1, 2) sum of the pixels in the rectangles.

Performance Comparison The same data sets are used for evaluating FloatBoost and Ad-
aBoost. The performance is measured by false alarm error rate given the detection rate
fixed at 99.5%. While a cascade of stronger classifiers are needed to achiever very low
false alarm [19, 7], here we present the learning curves for the first strong classifier com-
posed of up to one thousand weak classifiers. This is because what we aim to evaluate
here is to contrast between FloatBoost and AdaBoost learning algorithms, rather than the
system work. Interested reader is referred to [7] for a complete system which achieved a
false alarm of 10~% with the detection rate of 95%. (A live demo of multi-view face de-
tection system, the first real-time system of the kind in the world, is being submitted to the
conference).

0.8 T T
B +++ AdaBoost-train

B % AdaBoost-test
0751~ " — FloatBoost-train ||
== FloatBoost-test

07 ot i

Error Rates

0.35 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

# Weak Classifiers

Figure 5: Error Rates of FloatBoost vs AdaBoost for frontal face detection.

The training and testing error curves for FloatBoost and AdaBoost are shown in Fig.5,
with the detection rate fixed at 99.5%. The following conclusions can be made from these
curves: (1) Given the same number of learned features or weak classifiers, FloatBoost al-
ways achieves lower training error and lower test error than AdaBoost. For example, on the
test set, by combining 1000 weak classifiers, the false alarm of FloatBoost is 0.427 versus
0.485 of AdaBoost. (2) FloatBoost needs many fewer weak classifiers than AdaBoost in
order to achieve the same false alarms. For example, the lowest test error for AdaBoost
is 0.481 with 800 weak classifiers, whereas FloatBoost needs only 230 weak classifiers
to achieve the same performance. This clearly demonstrates the strength of FloatBoost in



learning to achieve lower error rate.

6 Conclusion and Future Work

By incorporating the idea of Floating Search [11] into AdaBoost [3, 15], FloatBoost ef-
fectively improves the learning results. It needs fewer weaker classifiers than AdaBoost to
achieve a similar error rate, or achieves lower a error rate with the same number of weak
classifiers. Such a performance improvement is achieved with the cost of longer training
time, about 5 times longer for the experiments reported in this paper.

The Boosting algorithm may need substantial computation for training. Several methods
can be used to make the training more efficient with little drop in the training performance.
Noticing that only examples with large weigh values are influential, Friedman et al. [5]
propose to select examples with large weights, i.e. those which in the past have been
wrongly classified by the learned weak classifiers, for the training weak classifier in t+- he
next round. Top examples within a fraction of 1 — 3 of the total weight mass are used,
where € [0.01,0.1].
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