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Abstract

Here we derive optimal gain functions for minimum mean square re-
construction from neural rate responses subjected to Poisson noise. The
shape of these functions strongly depends on the length 7' of the time
window within which spikes are counted in order to estimate the under-
lying firing rate. A phase transition towards pure binary encoding occurs
if the maximum mean spike count becomes smaller than approximately
three provided the minimum firing rate is zero. For a particular function
class, we were able to prove the existence of a second-order phase tran-
sition analytically. The critical decoding time window length obtained
from the analytical derivation is in precise agreement with the numerical
results. We conclude that under most circumstances relevant to informa-
tion processing in the brain, rate coding can be better ascribed to a binary
(low-entropy) code than to the other extreme of rich analog coding.

1 Optimal neuronal gain functions for short decoding time windows

The use of action potentials (spikes) as a means of communication is the striking feature of
neurons in the central nervous system. Since the discovery by Adrian [1] that action poten-
tials are generated by sensory neurons with a frequency that is substantially determined by
the stimulus, the idea of rate coding has become a prevalent paradigm in neuroscience [2].
In particular, today the coding properties of many neurons from various areas in the cortex
have been characterized by tuning curves, which describe the average firing rate response
as a function of certain stimulus parameters. This way of description is closely related to
the idea of analog coding, which constitutes the basis for many neural network models.
Reliable inference from the observed number of spikes about the underlying firing rate of
a neuronal response, however, requires a sufficiently long time interval, while integration
times of neurons in vivo [3] as well as reaction times of humans or animals when per-
forming classification tasks [4, 5] are known to be rather short. Therefore, it is important
to understand, how neural rate coding is affected by a limited time window available for
decoding.

While rate codes are usually characterized by tuning functions relating the intensity of the
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neuronal response to a particular stimulus parameter, the question, how relevant the idea of
analog coding actually is does not depend on the particular entity represented by a neuron.
Instead it suffices to determine the shape of the gain function, which displays the mean fir-
ing rate as a function of the actual analog signal to be sent to subsequent neurons. Here we
seek for optimal gain functions that minimize the minimum average squared reconstraction
error for a uniform source signal transmitted through a Poisson channel as a function of the
maximum mean number of spikes.

In formal terms, the issue is to optimally encode a real random variable z in the number
of pulses emitted by a neuron within a certain time window. Thereby, z stands for the
intended analog output of the neuron that shall be signaled to subsequent neurons. The
latter, however, can only observe a number of spikes k integrated within a time interval of
length T'. The statistical dependency between z and k is specified by the assumption of
Poisson noise

(u( ))

pk|p(z)) = exp{—u(z)}, )

and the choice of the gain function f(z), Wthh together with T determines the mean spike
count (z) = T f(z) . An important additional constraint is the limited output range of the
neuronal firing rate, which can be included by the requirement of a bounded gain function
(Ffmin < f(z) < fmaz, V). Since inhibition can reliably prevent a neuron from firing,
we will here consider the case fmin = 0 only. Instead of specifying frmaz, We impose
a bound directly on the mean spike count (i.e. p(r) < [), because frqez constitutes a
meaningful constraint only in conjunction with a fixed time window length T'.

As objective function we consider the minimum mean squared error (IMMSE) with respect
to Lebesgue measure for z € [0, 1],

2 2 o 1 = fl z p(k|p(z)) dz ?
bl = BB =5 ( Oflp(klu(w))dz)

where Z(k) = E[z|k] denotes the mean square estimator, which is the conditional expec-
tation (see e.g. [6]).

2

1.1 Tunings and errors

As derived in [7] on the basis of Fisher information the optimal gain function for a single
neuron in the asymptotic limit 7' — oo has a parabolic shape:

fesvme (13) fmazw 3)

For any finite [, however, this gain functlon is not necessarily optimal, and in the limit
T — 0, it is straight forward to show that the optimal tuning curve is a step function

fstep(z.',ﬁ) = fmaz 0 (ﬂ) - 19) ’ (4)
where ©(z) denotes the Heaviside function that equals one, if z > 0 and zero if z < 0.
The optimal threshold ¥#(fz) of the step tuning curve depends on i and can be determined

analytically
_ 3—v8e A +1
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as well as the corresponding MMSE [8]:
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Figure 1: The upper panel shows a bifurcation plot for ¥() — w and 9() + w of the
optimal gain function in Sy as a function of f illustrating the phase transition from binary
to continuous encoding. The dotted line separates the regions before and after the phase
transition in all three panels. Left from this line (i.e. for 2 < i°) the step function given by
Eq. 445 is optimal. The middle panel shows the MMSE of this step function (dashed) and
of the optimal gain function in Sy (solid), which becomes smaller than the first one after
the phase transition. The relative deviation between the minimal errors of S; and S (i.e.
(X%, — X%,)/x%,) is displayed in the lower panel and has a maximum below 0.035.

The binary shape for small i and the continuous parabolic shape for large i implies that
there has to be a transition from discrete to analog encoding with increasing . Unfortu-
nately it is not possible to determine the optimal gain function within the set of all bounded
functions B := {f|f : [0,1] = [0, fmaz]} and hence, one has to choose a certain param-
eterized function space S C B in advance that is feasible for the optimization. In [8], we
investigated various such function spaces and for g < 2.9, we did not find any gain func-
tion with an error smaller than the MMSE of the step function. Furthermore, we always
observed a phase transition from binary to analog encoding at a critical ¢ that depends
only slightly on the function space. As one can see in Fig. 1 (upper) ji° is approximately
three.



In this paper, we consider two function classes S1, Sz, which both contain the binary gain
function as well as the asymptotic optimal parabolic function as special cases. Furthermore
S; is a proper subset of Sy. Our interest in S; results from the fact that we can analyze the
phase transition in this subset analytically, while Sy is the most general parameterization
for which we have determined the optimal encoding numerically. The latter has six free
parameters a < b < ¢ € [0,1], fmia € (0, frmaz), @, B € [0,00) and the parameterization
of the gain functions is given by
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The integrals entering Eq. 2 for the MMSE in case of the gain function f52 then read
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where I'y o (2) = f;’ s~ e? ds denotes the truncated Gamma function. Numerical op-
timization leads to the minimal MMSE as a function of fi as displayed in Fig. 1 (middle).
The parameterization of the gain functions in Sy is given by
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withw € [0,1] and ¥ € [0, 00). The integrals entering Eq. 2 for the MMSE in case of the




gain function £ read
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The minimal MMSE for these gain functions is only slightly worse than that for Sa. The
relative difference between both is plotted in Fig. 1 (lower) showing a maximum deviation
of 3.2%. In particular, the relative deviation is extremely small around the phase transition.
This comparison suggests that a restriction to 81, which is a necessary simplification for
the following analytical investigation, does not change the qualitative results.

2 A phase transition

The phase transition from binary to analog encoding corresponds to a structural change of
the objective function x2(w, ). In particular, the optimality of binary encoding for i < ji°
implies that x2(w,y) has a minimum at w = 0. The existence of a phase transition implies
that with increasing fi this minimum changes into a local maximum at a certain critical
point & = z°. Therefore, the critical point can be determined by a local expansion of
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around w = 0, because the sign of its leading coefficient A, () (i.e. the coefficient g with
minimal k that does not vanish identically) determines, whether x2(w,~, i) has a local
minimum or maximum at w = 0. Accordingly, the critical point is given as the solution of

Ay(p) =0.

With quite a bit of efforts one can prove that the first derivative of x2(w,~, ji) vanishes for
all i. The second derivative, however, is a decreasing function of i and hence constitutes
the wanted leading coefficient
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Figure 2: The critical maximum mean spike count p¢ is shown as a function of -y (numerical
evaluation at v € {0.5,0.505,0.51,...,3.5}). The minimum p° = 2.98291 £ 10~7 at
v = 1.9 determines the phase transition in ;.

— 1668 (¢*—1) (Vitse 7 -3) £ ry, (3> (14)

Obviously, it is not possible to write the zeros of A, (f) in a closed form. The numerical
evaluation of the critical point i°(7y) as a function of v is displayed in Fig. 2. Note, that we
have treated -y as a fixed parameter, which means that we determine the critical point of the
phase transition in all subsets S1(y) of 8 that correspond to a fixed «. It is straight forward
to show that the critical point ¢ with respect to the entire class Sy is given by the minimum
of fi°(y). We determined this value up to a precision of +0.0001 to be 3¢ = 2.9857.

3 Conclusion

Our study reveals that optimal encoding with respect to the minimum mean squared error
is binary for maximum mean spike counts smaller than approximately three. Within the
function class &; we determined a second-order phase transition from binary to continuous
encoding analytically. With respect to mutual information the advantage of binary encod-
ing holds even up to a maximum mean spike count of about 3.5 (results not shown) and
remains discrete also for larger . In a related work [9], Softky compared the informa-
tion capacity of the Poisson channel with the information rate of a (noiseless) binary pulse
code. The rate of the latter turned out to exceed the capacity of the former at a factor of
at least 72 demonstrating a clear superiority of binary coding over analog rate coding. Our
rate-distortion analysis of the Poisson channel differs from that comparison in a twofold
way: First, we do not change the noise model and second, the MMSE is often more appro-
priate to account for the coding efficiency than the channel capacity [10]. In particular, the
assumption of a real random variable to be encoded with minimal mean squared error loss
appears to introduce a bias for analog coding rather than for binary coding. Nevertheless,




assuming a high temporal precision (i.e. small integration times 1'), our results hint into a
similar direction, namely that binary coding seems to be a more reasonable choice even if
one supposes that the only means of neuronal communication would be the transmission of
Poisson distributed spike counts.

Methodologically, our analysis is similar to many theoretical studies of population coding
if f(z) = p(z)/T is not interpreted as the neuron’s gain function, but as a tuning function
with respect to a stimulus parameter z. Though conceptually different, some readers may
therefore wish to know whether binary coding is still advantageous if many neurons, say N,
together encode for a single analog value. While the approach chosen in this paper is not
feasible in case of large IV, a partial answer can be given: For the efficiency of population
coding redundancy reduction is most important [7, 8, 11]. Smooth tuning curves, which
have a dynamic range at about the same size as the signal range always lead to a large
amount of redundancy so that the MMSE can not decrease faster than N 1. In contrast the
MMSE of binary tuning functions scales proportional to N =2 or even faster. This holds
also true for tuning functions, which are not perfectly binary, but have a dynamic range that
is at least smaller than the signal range divided by IN. Independent from # this implies that
a small dynamic range is always advantageous in case of population coding.

In contrast, most experimental studies do not report on binary or steep tuning functions,
but show smooth tuning curves only. However, the shape of a tuning function always de-
pends on the stimulus set used. Only recently, experimental studies under natural stimulus
conditions provided evidence for the idea that neuronal encoding is essentially binary [12].
Particularly striking is this observation for the H1 neuron of the fly [13], for which the
functional role is probably better understood than for most other neurons that have been
characterized by tuning functions.

While the noise level of the Poisson channel studied in this paper is rather large, the H1
neuron can respond very reliably under optimal stimulus conditions [13]. Another example
of a low-noise binary code has been found in the auditory cortex [14]. If we drop the
restriction to Poisson noise and impose a hard constraint on the maximum number of spikes
instead, optimal encoding is always discrete with p(z) taking integer values only [15]. This
is easy to grasp, because any rational p can not serve to increase the entropy of the available
symbol set (i.e. the candidate spike counts), but only increases the noise entropy instead.
In other words, it is the simple fact that spike counts are discrete by nature, which already
severely limits the possibility of graded rate coding. Clearly, this is not so obvious in case
of the Poisson channel, if there is no hard constraint imposed on the maximum spike count.

A remarkable aspect of the neuronal response of H1 shown in [13] is that it becomes the
more binary the less noisy the stimulus conditions are (the noise level is determined by
the different light conditions at midday, half an hour before, and half an hour after sun-
set). This suggests an interesting hypothesis why choosing a binary code with very high
temporal precision might be advantageous even if the signal of interest by itself does not
change at that time scale: the sensory input may sometimes be too noisy, so that repeated,
independent samples from the signal of interest may sometimes lead to neuronal firing and
sometimes not. In other words, a binary code at the short time scale is useful independent
from the correlation time of the signal to be encoded, if uncertainties have to be taken into
account, because any surplus available amount of temporal precision is maximally used for
uncertainty representation in a self-adjusting manner. Furthermore, this Monte-Carlo type
of uncertainty representation features several computational advantages [16]. Finally, it is
a remarkable fact that this property is unique for a binary code, because the representation
of uncertainty is necessary for many information processing tasks solved by the brain.

Additional support for the potential relevance of a binary neural code comes from intracel-
lular recordings in vivo revealing that the subthreshold membrane potential of many cortical
cells switches between up and down states [17] depending on the stimulus. Furthermore,



the dynamics of bursting cells plays an important role for neuronal signal transmission [18]
and may also be seen as evidence for binary rate coding. In light of these experimental
facts, we conclude from our results that the idea of binary tuning constitutes an important
hypothesis for neural coding.
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