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Abstract

We introduce a general family of kernels based on weighted transduc-
ers or rational relations, rational kernels, that can be used for analysis of
variable-length sequences or more generally weighted automata, in appli-
cations such as computational biology or speech recognition. We show
that rational kernels can be computed efficiently using a general algo-
rithm of composition of weighted transducers and a general single-source
shortest-distance algorithm. We also describe several general families of
positive definite symmetric rational kernels. These general kernels can
be combined with Support Vector Machines to form efficient and power-
ful techniques for spoken-dialog classification: highly complex kernels
become easy to design and implement and lead to substantial improve-
ments in the classification accuracy. We also show that the string kernels
considered in applications to computational biology are all specific in-
stances of rational kernels.

1 Introduction

In many applications such as speech recognition and computational biology, the objects
to study and classify are not just fixed-length vectors, but variable-length sequences, or
even large sets of alternative sequences and their probabilities. Consider for example the
problem that originally motivated the present work, that of classifying speech recognition
outputs in a large spoken-dialog application. For a given speech utterance, the output of a
large-vocabulary speech recognition system is a weighted automaton called a word lattice
compactly representing the possible sentences and their respective probabilities based on
the models used. Such lattices, while containing sometimes just a few thousand transitions,
may contain hundreds of millions of paths each labeled with a distinct sentence.
The application of discriminant classification algorithms to word lattices, or more generally
weighted automata, raises two issues: that of handling variable-length sequences, and that
of applying a classifier to a distribution of alternative sequences. We describe a general
technique that solves both of these problems.
Kernel methods are widely used in statistical learning techniques such as Support Vector
Machines (SVMs) [18] due to their computational efficiency in high-dimensional feature
spaces. This motivates the introduction and study of kernels for weighted automata. We
present a general family of kernels based on weighted transducers or rational relations,
rational kernels which apply to weighted automata. We show that rational kernels can be
computed efficiently using a general algorithm of composition of weighted transducers and
a general single-source shortest-distance algorithm.
We also briefly describe some specific rational kernels and their applications to spoken-
dialog classification. These kernels are symmetric and positive definite and can thus be
combined with SVMs to form efficient and powerful classifiers. An important benefit of
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Table 1: Semiring examples. �!� ��� is defined by: "#�$� ����%�& �('*),+�-/.,021 � .,02354
.

our approach is its generality and its simplicity: the same efficient algorithm can be used
to compute arbitrarily complex rational kernels. This makes highly complex kernels easy
to use and helps us achieve substantial improvements in classification accuracy.

2 Weighted automata and transducers

In this section, we present the algebraic definitions and notation necessary to introduce
rational kernels.

Definition 1 ([7]) A system
-/6 ���7���7� �8� � 4

is a semiring if:
-96 ���7� � 4

is a commutative
monoid with identity element � ;

-96 ���7� � 4
is a monoid with identity element � ; � distributes

over � ; and � is an annihilator for � : for all :<; 6 ��:�� �!& �=�>:#& � .

Thus, a semiring is a ring that may lack negation. Table 2 lists some familiar examples
of semirings. In addition to the Boolean semiring and the probability semiring used to
combine probabilities, two semirings often used in applications are the log semiring which
is isomorphic to the probability semiring via a

' )�+
morphism, and the tropical semiring

which is derived from the log semiring using the Viterbi approximation.

Definition 2 A weighted finite-state transducer ? over a semiring
6

is an 8-tuple ?@&-BA ��CD��E���F���GH�JIK��LM�JN 4
where:

A
is the finite input alphabet of the transducer; C is the

finite output alphabet; E is a finite set of states; FPOQE the set of initial states; GROSE the
set of final states; I@OTEU
 -VA � �XW � 4 
 - CY� �XW � 4 
 6 
�E a finite set of transitions;L�Z�F\[ 6

the initial weight function; and N]Z�GU[ 6
the final weight function mappingG to

6
.

Weighted automata can be formally defined in a similar way by simply omitting the input
or the output labels.
Given a transition

. ;^I , we denote by _a` .cb
its origin or previous state and d�` .cb

its desti-
nation state or next state, and e!` .cb

its weight. A path fQ& .hgjici�iJ.lk
is an element of I�m

with consecutive transitions: d�` .,n 0 g b &o_a` .5npb
, q$&srt�cu�ucuv��w . We extend d and _ to paths

by setting: d�` f b &xd�` .�kXb
and _a` f b &o_a` .�gJb

. The weight function e can also be extended
to paths by defining the weight of a path as the � -product of the weights of its constituent
transitions: e!` f b &se!` . g b � ici�i �Qe!` . k b

. We denote by y -/z � z|{}4
the set of paths from

z
to

z {
and by y -9z �~"a�~%2� z { 4

the set of paths from
z

to
z {

with input label "�; A m and output
label % (transducer case). These definitions can be extended to subsets �7��� { O�E , by:y - �#�J"8�~%2��� { 4 &��������j�V�~�������/y -/z �~"a�~%2� z { 4

.
A transducer ? is regulated if the output weight associated by ? to any pair of input-output
string

- "a�~% 4
by:

` ` ? b bV- "8�J% 4 & �� ����� ��� 1 � 3 � �M� L - _a` f b�4 ��e!` f b �^N2` d�` f b b
(1)

is well-defined and in
6

. ` ` ? b b�- " 4 & � when y - F��J"8�~%2��G 4 &x� . In the following, we will
assume that all the transducers considered are regulated. Weighted transducers are closed
under � , � and Kleene-closure. In particular, the � -sum and � -multiplications of two
transducers ? g

and ?M� are defined for each pair
- "a�~% 4

by:` ` ? g ��?�� b b�- "8�J% 4 & ` ` ? g�b bV- "8�J% 4 �S` ` ?2� b bV- "8�~% 4
(2)

` ` ? g ��?�� b b�- "8�J% 4 & �1X�M1l�V1X� � 3v�M3v��3�� ` ` ? g�b b�- " g �J% gv4 ��` ` ?�� b b�- "����J%�� 4
(3)



3 Rational kernels

This section introduces rational kernels, presents a general algorithm for computing them
efficiently and describes several examples of rational kernels.

3.1 Definition

Definition 3 A kernel � is rational if there exist a weighted transducer ? &-BA ��CD��E���F���GH�JIK��LM�JN 4
over the semiring

6
and a function � Z 6 [ 	 such that for

all "a�~%\; A m :
� - "8�J% 4 &�� - ` ` ? b b�- "a�~% 4~4

(4)

In general, � is an arbitrary function mapping
6

to 	 . In some cases, it may be desirable
to assume that it is a semiring morphism as in Section 3.6. It is often the identity function
when

6 &o	 and may be a projection when the semiring
6

is the cross-product of 	 and
another semiring (

6 &S	�
 6 {
).

Rational kernels can be naturally extended to kernels over weighted automata. In the
following, to simplify the presentation, we will restrict ourselves to the case of acyclic
weighted automata which is the case of interest for our applications, but our results apply
similarly to arbitrary weighted automata. Let � and � be two acyclic weighted automata
over the semiring

6
, then � - � ��� 4

is defined by:

� - �!��� 4 &�� - � 1 � 3 ` ` � b bV- " 4 �S` ` ? b bV- "8�~% 4 ��` ` � b bV- % 4J4
(5)

More generally, the results mentioned in the following for strings apply all similarly to
acyclic weighted automata. Since the set of weighted transducers over a semiring

6
is also

closed under � -sum and � -product [2, 3], it follows that rational kernels over a semiring6
are closed under sum and product. We denote by � g ��� � the sum and by � g 
	� � the

product of two rational kernels � g
and �<� . Let ? g

and ?M� be the associated transducers of
these kernels, we have for example:- � g �
� � 4�- "a�~% 4 &�� - ` ` - ? g ��? � 4Vb b�- "a�~% 4~4 &�� g - "8�J% 4 �
� � - "a�~% 4

(6)

In learning techniques such as those based on SVMs, we are particularly interested in
positive definite symmetric kernels, which guarantee the existence of a corresponding re-
producing kernel Hilbert space. Not all rational kernels are positive definite symmetric but
in the following sections we will describe some general classes of rational kernels that have
this property.
Positive definite symmetric kernels can be used to construct other families of kernels
that also meet these conditions [17]. Polynomial kernels of degree _ are formed from
the expression

- � �T: 4��
, and Gaussian kernels can be formed as ����� -~��� ������� 4

with� � - "a�~% 4 &�� - "8�J" 4 ��� - %2�~% 4 � r�� - "8�J% 4
. Since the class of symmetric positive defi-

nite kernels is closed under sum [1], the sum of two positive definite rational kernels is also
a positive definite rational kernel.
In what follows, we will focus on the algorithm for computing rational kernels. The al-
gorithm for computing � - "a�~% 4

, or � - �!��� 4
, for any two acyclic weighted automata, is

based on two general algorithms that we briefly present: composition of weighted trans-
ducers to combine � , ? , and � , and a general shortest-distance algorithm in a semiring

6
to compute the � -sum of the weights of the successful paths of the combined machine.

3.2 Composition of weighted transducers

Composition is a fundamental operation on weighted transducers that can be used in many
applications to create complex weighted transducers from simpler ones. Let

6
be a com-

mutative semiring and let ? g
and ?M� be two weighted transducers defined over

6
such that

the input alphabet of ? � coincides with the output alphabet of ? g
. Then, the composition

of ? g
and ?M� is a weighted transducer ? g�� ?�� which, when it is regulated, is defined for all
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Figure 1: (a) Weighted transducer ? g
over the log semiring. (b) Weighted transducer ? �

over the log semiring. (c) Construction of the result of composition ? g � ? � . Initial states
are represented by bold circles, final states by double circles. Inside each circle, the first
number indicates the state number, the second, at final states only, the value of the final
weight function N at that state. Arrows represent transitions and are labeled with symbols
followed by their corresponding weight.

"8�J% by [2, 3, 15, 7]:1

` ` ? g � ?�� b bV- "8�J% 4 &��
�

` ` ? g�b bV- "8� � 4 ��` ` ?�� b b�- � �~% 4
(7)

Note that a transducer can be viewed as a matrix over a countable set
A m!
 CKm and com-

position as the corresponding matrix-multiplication. There exists a general and efficient
composition algorithm for weighted transducers which takes advantage of the sparsity of
the input transducers [14, 12]. States in the composition ? g � ?�� of two weighted trans-
ducers ? g

and ?8� are identified with pairs of a state of ? g
and a state of ?8� . Leaving aside

transitions with
W

inputs or outputs, the following rule specifies how to compute a transition
of ? g � ? � from appropriate transitions of ? g

and ? � :2-9z g �J:�� � �~e g � z � 4
and

-/z {g � � ��� �~e � � z {� 4 &�� -~-9z g � z {g 4 ��:h���l�~e g ��e � � -/z � � z {� 4J4
(8)

In the worst case, all transitions of ? g
leaving a state

z g
match all those of ?a� leaving statezl{g

, thus the space and time complexity of composition is quadratic: 	
-~-�
 E g 
 � 
 I g 
 4�-�
 E � 
 �
 I � 
 4~4 . Fig.(1) (a)-(c) illustrate the algorithm when applied to the transducers of Fig.(1) (a)-

(b) defined over the log semiring. The intersection of two weighted automata is a special
case of composition. It corresponds to the case where the input and output label of each
transition are identical.

3.3 Single-source shortest distance algorithm over a semiring

Given a weighted automaton or transducer � , the shortest-distance from state
z

to the set
of final states G is defined as the � -sum of all the paths from

z
to G :

� ` zXb & �� �����}��� �M� e!` f b ��N2` d�` f b*b
(9)

when this sum is well-defined and in
6

, which is always the case when the semiring is w -
closed or when � is acyclic [11], the case of interest in what follows. There exists a general
algorithm for computing the shortest-distance

� ` zXb
in linear time 	

-�
 E 
 � - ?
�(��?�� 4�
 I 
 4
,

where ? � denotes the maximum time to compute � and ? � the time to compute � [11].
The algorithm is a generalization of Lawler’s algorithm [8] to the case of an arbitrary
semiring

6
. It is based on a generalized relaxation of the outgoing transitions of each

state of � visited in reverse topological order [11].
1We use a matrix notation for the definition of composition as opposed to a functional notation.

This is a deliberate choice motivated by an improved readability in many applications.
2See [14, 12] for a detailed presentation of the algorithm including the use of a transducer filter

for dealing with � -multiplicity in the case of non-idempotent semirings.
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Figure 2: Weighted transducers associated to two rational kernels. (a) Edit-distance kernel.
(b) Gappy � -gram count kernel, with � = 2.

3.4 Algorithm

Let � be a rational kernel and let ? be the associated weighted transducer. Let � and �
be two acyclic weighted automata. � and � may represent just two strings "8�J%^; A m or
may be any other complex weighted acceptors. By definition of rational kernels (Eq.(5))
and the shortest-distance (Eq.(9)), � - �!��� 4

can be computed by:
1. Constructing the acyclic composed transducer � &�� � ? � � .
2. Computing

� ` � b
, the shortest-distance from the initial states of � to its final states

using the shortest-distance algorithm described in the previous section.
3. Computing � - � ` � b�4

.
Thus, the total complexity of the algorithm is 	

-�
 ? 
 
 � 
 
 � 
 ��� 4
, where


 ? 

,

 � 
 , and


 � 

denote respectively the size of ? , � and � and � the worst case complexity of computing
� - " 4

, "�; 6
. If we assume that � can be computed in constant time as in many applica-

tions, then the complexity of the computation of � - � ��� 4
is quadratic with respect to �

and � is: 	
-�
 ? 
 
 � 
 
 � 
 4

.

3.5 Edit-distance kernels

Recently, several kernels, string kernels, have been introduced in computational biology for
input vectors representing biological sequences [4, 19]. String kernels are specific instances
of rational kernels. Fig.(2) (a) shows the weighted transducer over the tropical semiring
associated to a classical type of string kernel. The kernel corresponds to an edit-distance
based on a symbol substitution with cost � , deletion with cost r , and insertion of cost�

. All classical edit-distances can be represented by weighted transducers over the tropical
semiring [13, 10]. The kernel computation algorithm just described can be used to compute
efficiently the edit-distance of two strings or two sets of strings represented by automata. 3

3.6 Rational kernels of the type ? � ? 0 g
There exists a general method for constructing a positive definite and symmetric rational
kernel from a weighted transducer ? when � Z 6 [ 	 is a semiring morphism – this
implies in particular that

6
is commutative. Denote by ? 0 g

the inverse of ? , that is the
transducer obtained from ? by transposing the input and output labels of each transition.
Then the composed transducer � &S? � ? 0 g

is symmetric and, when it is regulated, defines

3We have proved and will present elsewhere a series of results related to kernels based on the
notion of edit-distance. In particular, we have shown that the classical edit-distance � with equal
costs for insertion, deletion and substitution is not negative definite [1] and that the Gaussian kernel���
	���
 �
� is not positive definite.



a positive definite symmetric rational kernel � . Indeed, since � is a semiring morphism,
by definition of composition:

� - "8�J% 4 &�� - ` ` � b b�- "a�~% 4~4 &��
�
� - ` ` ? b b�- "8� � 4J4�i � - ` ` ? b b�- %2� � 4J4

which shows that � is symmetric. For any non-negative integer d and for all "a�~% we define
a symmetric kernel ��� by:

��� - "8�~% 4 &��� � � � � �
- ` ` ? b b�- "8� � 4J4�i � - ` ` ? b bV- %�� � 4J4

where the sum runs over all strings � of length less or equal to d . Let �
g � � � ��ucu�uv� �	�

be an arbitrary ordering of these strings. For any ��
 � and any " g ��u�ucu��J"
� ; A m ,
define the matrix � by: �

n�� & � � - " n �~" �X4
. Then, � & � ��� with � defined by � n�� &

� - ` ` ? b b�- " n � � �X4J4
. Thus, the eigenvalues of � are all non-negative, which implies that � � is

positive definite [1]. Since � is a point-wise limit of � � , � - "8�J% 4 & ' � � ����� � � - "8�J% 4
,

� is also definite positive [1].

4 Application to spoken-dialog classification

Rational kernels can be used in a variety of applications ranging from computational biol-
ogy to optical character recognition. This section singles out one specific application, that
of topic classification applied to the output of a speech recognizer. We will show how the
use of weighted transducers rationalizes the design and optimization of kernels. Simple
equations and graphs replace complex diagrams and intricate algorithms often used for the
definition and analysis of string kernels.
As mentioned in the introduction, the output of a speech recognition system associated
to a speech utterance is a weighted automaton called a word lattice representing a set of
alternative sentences and their respective probabilities based on the models used. Rational
kernels help address both the problem of handling variable-length sentences and that of
applying a classification algorithm to such distributions of alternatives.
The traditional solution to sentence classification is the “bag-of-words” approach used in
information retrieval. Because of the very large dimension of the input space, the use of
large-margin classifiers such as SVMs [6] and AdaBoost [16] was found to be appropriate
in such applications.
One approach adopted in various recent studies to measure the topic-similarity of two sen-
tences consists of counting their common non-contiguous � -grams, i.e., their common
substrings of � words with possible insertions. These � -grams can be extracted explic-
itly from each sentence [16] or matched implicitly through a string kernel [9]. We will
show that such kernels are rational and will describe how they can be easily constructed
and computed using the general algorithms given in the previous section. More generally,
we will show how rational kernels can be used to compute the expected counts of common
non-contiguous � -grams of two weighted automata and thus define the topic-similarity of
two lattices. This will demonstrate the simplicity, power, and flexibility of our framework
for the design of kernels.

4.1 Application of ? � ? 0 g
kernels

Consider a word lattice � over the probability semiring. � can be viewed as a probability
distribution y�� over all strings �<; A m . The expected count or number of occurrences of
an � -gram sequence " in a string � for the probability distribution y � is: ����y � - � 4 
 � 
 1 ,
where


 � 
 1 denotes the number of occurrences of " in � . It is easy to construct a weighted
transducer ? � that outputs the set of � -grams of an input lattice with their correspond-
ing expected counts. Fig.(3) (a) shows that transducer, when the alphabet is reduced toA & � :�� � � and � &�r . Similarly, the transducer ? �H� � of Fig.(3) (b) can be used to output
non-contiguous or gappy � -grams with their expected counts. 4 Long gaps are penalized

4The transducers shown in the figures of this section are all defined over the probability semiring,
thus a transition corresponding to a gap in �! #" $ is weighted by % .
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Figure 3: � -gram transducers ( � = 2) defined over the probability semiring. (a) Bigram
counter transducer ?a� . (b) Gappy bigram counter ?��v� � .
with a decay factor ����L��Y� : a gap of length � reduces the count by L � . A transducer
counting variable-length � -grams is obtained by simply taking the sum of these transduc-
ers: ? � � � � & � � � � ? �t� � .
In the remaining of this section, we will omit the subscript � and L since our results are
independent of the choice of these parameters. Thus the topic-similarity of two strings or
lattices � and � based on the expected counts of theirs common substrings is given by:

� -
� � � 4 & � ` � � - ? � ? 0 g 4 �

�
b

(10)

The kernel � is of the type studied in section 3.6 and thus is symmetric and positive
definite.

4.2 Computation

The specific form of the kernel � and the associativity of composition provide us with
several alternatives for computing � .
General algorithm. We can use the general algorithm described in Section 3.4 to compute
� by precomputing the transducer ? � ? 0 g

. Fig.(2)(b) shows the result of that composition
in the case of gappy bigrams. Using that algorithm, the complexity of the computation of
the kernel � -

� � � 4
as described in the previous section is quadratic 	

-�

�

 

�

 4

. This
particular example has been treated by ad hoc algorithms with a similar complexity, but
that only work with strings [9, 5] and not with weighted automata or lattices.
Other factoring. Thanks to the associativity of composition, we can consider a different
factoring of the composition cascade defining � :

� -
� � � 4 & � ` - � � ? 4 � - ? 0 g �

�
4Vb

(11)

This factoring suggests computing �
� ? and ? 0 g �

� first and then composing the resulting
transducers rather than constructing ? � ? 0 g

. The choice between the two methods does
not affect the overall time complexity of the algorithm, but in practice one method may be
preferable over the other. We are showing elsewhere that in the specific case of the counting
transducers such as those described in previous sections, the kernel computation can in fact
be performed in linear time, that is in 	

-�

�

 � 

�

 4

, in particular by using the notion of
failure functions.

4.3 Experimental results

We used the ? � ? 0 g
-type kernel with SVMs for call-classification in the spoken language

understanding (SLU) component of the AT&T How May I Help You natural dialog system.
In this system, users ask questions about their bill or calling plans and the objective is to
assign a class to each question out of a finite set of 38 classes made of call-types and named
entities such as Billing Services, or Calling Plans.
In our experiments, we used 7,449 utterances as our training data and 2,228 utterances as
our test data. The feature space corresponding to our lattice kernel is that of all possible
trigrams over a vocabulary of 5,405 words. Training required just a few minutes on a single
processor of a 1GHz Intel Pentium processor Linux cluster with 2GB of memory and 256
KB cache. The implementation took only about a few hours and was entirely based on



the FSM library. Compared to the standard approach of using trigram counts over the
best recognized sentence, our experiments with a trigram rational kernel showed a �����
reduction in error rate at a

� ��� rejection level.

5 Conclusion

In our classification experiments in spoken-dialog applications, we found rational kernels
to be a very powerful exploration tool for constructing and generalizing highly efficient
string and weighted automata kernels. In the design of learning machines such as SVMs,
rational kernels give us access to the existing set of efficient and general weighted automata
algorithms [13]. Prior knowledge about the task can be crafted into the kernel using graph
editing tools or weighted regular expressions, in a way that is often more intuitive and easy
to modify than complex matrices or formal algorithms.
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