
Speeding up the Parti-Game Algorithm

Maxim Likhachev
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
maxim+@cs.cmu.edu

Sven Koenig
College of Computing

Georgia Institute of Technology
Atlanta, GA 30312-0280

skoenig@cc.gatech.edu

Abstract

In this paper, we introduce an efficient replanning algorithm for nonde-
terministic domains, namely what we believe to be the first incremental
heuristic minimax search algorithm. We apply it to the dynamic dis-
cretization of continuous domains, resulting in an efficient implemen-
tation of the parti-game reinforcement-learning algorithm for control in
high-dimensional domains.

1 Introduction

We recently developed Lifelong Planning A* (LPA*), a search algorithm for deterministic
domains that combines incremental and heuristic search to reduce its search time [1]. In-
cremental search reuses information from previous searches to find solutions to series of
similar search tasks faster than is possible by solving each search task from scratch [2],
while heuristic search uses distance estimates to focus the search and solve search prob-
lems faster than uninformed search. In this paper, we extend LPA* to nondeterministic
domains. We believe that the resulting search algorithm, called Minimax LPA*, is the first
incremental heuristic minimax search algorithm. We apply it to the dynamic discretization
of continuous domains, resulting in an efficient implementation of the popular parti-game
algorithm [3]. Our first experiments suggest that this implementation of the parti-game
algorithm can be an order of magnitude faster in two-dimensional domains than one with
uninformed search from scratch and thus might allow the parti-game algorithm to scale up
to larger domains. There also exist other ways of decreasing the amount of search per-
formed by the parti-game algorithm. We demonstrate some advantages of Minimax LPA*
over Prioritized Sweeping [4] in [5] but it is future work to compare it with the algorithms
developed in [6].

2 Parti-Game Algorithm

The objective of the parti-game algorithm is to move an agent from given start coordinates
to given goal coordinates in continuous and potentially high-dimensional domains with ob-
stacles of arbitrary shapes. It is popular because it is simple, efficient, and applies to a broad
range of control problems. To solve these problems, one can first discretize the domains
and then use conventional search algorithms to determine plans that move the agent to the
goal coordinates. However, uniform discretizations can prevent one from finding a plan if

(a)

S1

S0

A
S3

S2

S5

S4

S7

Sgoal

S9

S8

S11

S10

(b)

6

s8s0

s9s1

s2 s4

s5

sgoal

s7

h=6
g=∞

rhs=24
s3

h=0
g=18

rhs=18

h=6
g=∞

rhs=18

h=6
g=12

rhs=12

h=12
g=6

rhs=6

h=18
g=∞

rhs=12

h=6
g=12

rhs=12

h=6
g=6

rhs=6

h=12
g=0

rhs=0

h=18
g=∞
rhs=6

6

6

6

6

6

6

6

6

6

s10

s11

h=24
g=∞

rhs=∞

h=24
g=∞

rhs=∞

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

gd=12gd=6gd=0gd=6gd=12gd=18

gd=18gd=12gd=6gd=12gd=18gd=24

(c)

6

s8s0

s9s1

s2 s4

s5

sgoal

s7

h=6
g=24

rhs=24
s3

h=0
g=30

rhs=30

h=6
g=18

rhs=18

h=6
g=12

rhs=12

h=12
g=6

rhs=6

h=18
g=12

rhs=12

h=6
g=12

rhs=12

h=6
g=6

rhs=6

h=12
g=0

rhs=0

h=18
g=6

rhs=6

6

6

6

6

6

6

6

6

6

s10

s11

h=24
g=∞

rhs=18

h=24
g=∞

rhs=12

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

∞

∞

gd=12gd=6gd=0gd=6gd=12gd=18

gd=18gd=12gd=6gd=12gd=30gd=24

(d)

6

s8s0

s9s1

s2 s4

s5

sgoal

s7

h=6
g=24

rhs=24
s3

h=0
g=∞

rhs=∞

h=6
g=18

rhs=18

h=6
g=12

rhs=12

h=12
g=6

rhs=6

h=18
g=12

rhs=12

h=6
g=12

rhs=12

h=6
g=6

rhs=6

h=12
g=0

rhs=0

h=18
g=6

rhs=6

6

6

6

6

6

6

6

6

6

s10

s11

h=24
g=18

rhs=18

h=24
g=12

rhs=12

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

∞

∞

gd=12gd=6gd=0gd=6gd=12gd=18

gd=18gd=12gd=6gd=12gd=∞gd=24
∞

(e)

S’1

S0

A
S’3

S’2

S’5

S4

S7

Sgoal

S9

S8

S11

S10

A

S’’1

S’’2

S’’3 S’’5

(f)

s7

h=12
g=∞
rhs=6

s0

s’’1

sgoal

h=6
g=∞

rhs=∞

h=6
g=∞

rhs=18

h=12
g=0

rhs=0

s’1

h=6
g=∞

rhs=24

3

3

5

5

6

6

s’2

s’’3

h=3
g=∞

rhs=24

h=6
g=∞

rhs=12

s’3

h=0
g=15

rhs=15

s’’2

h=3
g=12

rhs=12

3

3

3

3

3

3

6

6

6

6

6
6

s4

s’’5

h=6
g=∞

rhs=∞

h=6
g=6

rhs=6

s’5

h=6
g=∞

rhs=11

3

3

5

5

6

6

6

6

6

6

66

6

6

6

6

66

6

6

s8

s9

h=18
g=∞

rhs=∞

h=18
g=∞
rhs=6

6

6

6

6

6

6

s10

s11

h=24
g=∞

rhs=∞

h=24
g=∞

rhs=∞

6

6

6

6

6

6

Figure 1: Example behavior of the parti-game algorithm

they are too coarse-grained (for example, because the resolution prevents one from notic-
ing small gaps between obstacles) and results in large state spaces that cannot be searched
efficiently if they are too fine-grained. The parti-game algorithm solves this dilemma by
starting with a coarse discretization and refines it during execution only when and where it
is needed (for example, around obstacles), resulting in a nonuniform discretization.

We use a simple two-dimensional robot navigation domain to illustrate the behavior of the
parti-game algorithm. Figure 1(a) shows the initial discretization of our example domain
into 12 large cells together with the start coordinates of the agent (A) and the goal region
(cell containing ���������). Thus, it can always attempt to move towards the center of each
adjacent cell (that is, cell that its current cell shares a border line with). The agent can
initially attempt to move towards the centers of either �
	 , ��� , or ��� , as shown in the figure.
Figure 1(b) shows the state space that corresponds to the discretized domain under this
assumption. Each state corresponds to a cell and each action corresponds to a movement
option. The parti-game algorithm initially ignores obstacles and makes the optimistic (and
sometimes wrong) assumption that each action deterministically reaches the intended state,
for example, that the agent indeed reaches � � if it is somewhere in ��
 and moves towards
the center of ��� . The costs of an action outcome approximates the Euclidean distance from
the center of the old cell of the agent to the center of its new cell.1 (The cost of the action

1We compute both the costs of action outcomes and the heuristics of states using an imaginary
uniform grid, shown in gray in Figures 1(a) and (e), whose cell size corresponds to the resolution
limit of the parti-game algorithm. The cost of an action outcome is then computed as the maximum
of the absolute values of the differences of the x and y coordinates between the imaginary grid cell

A
t1

t2

t0

A

A

O1

O2

O3

Figure 2: Example of a nondeterministic action

outcome is infinity if the old and new cells are identical since the action then cannot be
part of a plan that minimizes the worst-case plan-execution cost from the current state of
the agent to � ������� .) The parti-game algorithm then determines whether the minimax goal
distance of the current state �����������	��
 of the agent is finite. If so, the parti-game algorithm
repeatedly chooses the action that minimizes the worst-case plan-execution cost, until the
agent reaches ������� � or observes additional action outcomes. The minimax goal distance
of �����������
��
 is ����� ��
�������� and the agent minimizes the worst-case plan-execution cost by
moving from ��
 towards the centers of either � � or � � . Assume that it decides to move
towards the center of � � . The agent always continues to move until it either gets blocked by
an obstacle or enters a new cell. It immediately gets blocked by the obstacle in �
 . When
the agent observes additional action outcomes it adds them to the state space. Thus, it now
assumes that it can end up in either � � or �
 if it is somewhere in �
 and moves towards
the center of � � . The same scenario repeats when the agent first attempts to move towards
the center of � � and then attempts to move towards the center of �
	 but gets blocked twice
by the obstacle in ��
 . Figure 1(c) shows the state space after the attempted moves towards
the centers of � � and ��� , and Figure 1(d) shows the state space after the attempted move
towards the center of � 	 . The minimax goal distance of � ���������	��
 is now ����� �
 ����� .
We say that �����������
��
 is unsolvable since an agent in �����������
��
 is not guaranteed to reach
� ����� � with finite plan-execution cost. In this case, the parti-game algorithm refines the
discretization by splitting all solvable cells that border unsolvable cells and all unsolvable
cells that border solvable cells. Each cell is split into two cells perpendicular to its longest
axis. (The axis of the split is chosen randomly for square cells.) Figure 1(e) shows the new
discretization of the domain. The parti-game algorithm then removes those states (and their
actions) from the state space that correspond to the old cells and adds states (and actions)
for the new cells, again making the optimistic assumption that each action for the new states
deterministically reaches the intended state. This ensures that the minimax goal distance
of � ���������	��
 becomes finite. Figure 1(f) shows the resulting state space. The parti-game
algorithm now repeats the process until either the agent reaches � ��� � � or the domain cannot
be discretized any further because the resolution limit is reached.

If all actions either did indeed deterministically reach their intended states or did not change
the state of the agent at all (as in the example from Figure 1), then the parti-game algorithm
could determine the minimax goal distances of the states with a deterministic search al-
gorithm after it has removed all actions that have an action outcome that leaves the state
unchanged (since these actions cannot be part of a plan with minimal worst-case plan-
execution cost). However, actions can have additional outcomes, as Figure 2 illustrates.
For example, an agent cannot only end up in "! and � but also in 	 if it moves from some-
where in � towards the center of ! . The parti-game algorithm therefore needs to determine
the minimax goal distances of the states with a minimax search algorithm. Furthermore,
the parti-game algorithm repeatedly determines plans that minimize the worst-case plan-

that contains the center of the new and old state of the agent. Similarly, the heuristic of a state
is computed as the maximum of the absolute differences of the x and y coordinates between the
imaginary grid cell that contains the center of the state of the agent and the imaginary grid cell that
contains the center of the state in question. Note that the grid is imaginary and never needs to be
constructed. Furthermore, it is only used to compute the costs and heuristics and does not restrict
either the placement of obstacles or the movement of the agent.

The pseudocode uses the following functions to manage the priority queue � : U.Top ��� returns a state with the smallest priority of all states in � .
U.TopKey ��� returns the smallest priority of all states in � . (If � is empty, then U.TopKey ��� returns � ���	��
 .) U.Pop ��� deletes the state with the
smallest priority in � and returns the state. U.Insert ����
���� inserts � into � with priority � . U.Update ����
���� changes the priority of � in � to � . (It
does nothing if the current priority of � already equals � .) Finally, U.Remove ����� removes � from � .

procedure CalculateKey ������
01 � return � ��� ������������
�� �!�����"�#�%$&�'����()!*"*�+�,%-.
������/��� �����������	
����!�������#�0
 ;

procedure Initialize ����
02 �1�3254 ;�
03 � for all ��6879� ��� �����:23�������;2�� ;�
04 �;� �!������<�="> ?/�@25A ;�
05 � U.Insert ��� <�="> ?
 CalculateKey ��� <�=B>�? �#� ;

procedure UpdateState ��C%��
06 � if ��CED2�� <�="> ? ��� �!����C%�@2���� � >!F�GIH)�J ��K"LNM�O F�P)�(�(H)'Q > J ��R ��C@
#S'
	� O �'$������ O �T� ;�
07 � if ��CU6��I� U.Remove ��C%� ;�
08 � if � ����C%�1D2�� �!����C%�#� U.Insert ��C@
 CalculateKey ��C%�#� ;

procedure ComputePlan ����
09 � while � U.TopKey ���:VW CalculateKey ����(�)!*"*"+�,�-"� OR � �!�����"(�)!*"*"+�,�-"�1D2�������(�)!*B*�+�,�-"�#��
10 �XCY2 U.Pop ��� ;�
11 � if ������C%�IZ3� �!����C%�#� /* C is locally overconsistent */�
12 � ����C%�;2�� �!����C%� ;�
13 � for all �968[1�.\B]���C'� UpdateState ����� ;�
14 � else /* C is locally underconsistent */�
15 � ����C%�;25� ;�
16 � for all �968[1�.\B]���C'�%^ � C'� UpdateState ����� ;

procedure Main()�
17 �;� ()!*"*�+�,�- 2�� M - > *"- ;�
18 � Initialize ��� ;�
19 � ComputePlan ��� ;�
20 � while ��� (�)!*"*"+�,�- D23� <�="> ? ��
21 � /* if ��� �!������()!*"*�+�,�-"�:25�&� then the agent is not guaranteed to reach �.<�="> ? with finite plan-execution cost */�
22 � Execute K�_T`a��� � >NF�GaH M (�)!*"*"+�,�- J ��K"L M F�P)�(�(H M ()!*"*�+�,%- Q > J ��R ��� ()!*"*�+�,%-
	S'
	���%$E�������T� ;�
23 � Set ��()!*"*�+�,%- to the current state of the agent after the action execution;�
24 � Scan for changed action costs;�
25 � if any action costs have changed�
26 � for all actions with changed action costs R���Cb
	S'
	c���
27 � Update the action cost R���C@
/S%
	cN� ;�
28 � UpdateState ��C%� ;�
29 � for all �96���
30 � U.Update ����
 CalculateKey �����#� ;�
31 � ComputePlan ��� ;

Figure 3: Minimax LPA*

execution cost from � ���������
��
 to � ��� � � . It is therefore important to make the searches fast.
In the next sections, we describe Minimax LPA* and how to implement the parti-game al-
gorithm with it. Figures 1(b), (c), (d) and (f) show the state spaces for our example directly
after the parti-game algorithm has used Minimax LPA* to determine the minimax goal
distance of � ���������
��
 . All expanded states (that is, all states whose minimax goal distances
have been computed) are shown in gray. Minimax LPA* speeds up the searches by reusing
information from previous searches, which is the reason why it expands only three states in
Figure 1(d). Minimax LPA* also speeds up the searches by using heuristics to focus them,
which is the reason why it expands only four states in Figure 1(f).

3 Minimax LPA*

Minimax LPA* repeatedly determines plans that minimize the worst-case plan-execution
cost from � ���������
��
 to � ��� � � as the agent moves towards � ��� � � in nondeterministic domains
where the costs of actions increase or decrease over time. It generalizes two incremental
search algorithms, namely our LPA* [1] and DynamicSWSF-FP [7]. Figure 3 shows the
algorithm, that we describe in the following. Numbers in curly braces refer to the line
numbers in the figure.

3.1 Notation
�

denotes the finite set of states. ����
 � ��
�� � is the start state, and � ����� � � � is the goal
state. � � ��� is the set of actions that can be executed in ��� � .

���
	�	 � �
������� � is the set
of successor states that can result from the execution of ��� � � ��� in ��� � .

����	�	 � ��� �� ����� ��� ����� ���
	�	 � �
����� for some ��� � � ����� is the set of successor states of � � � .!�"�# ��� � � � � ����� ��� �$� ����	�	 � ���%����� for some �&� � � ��� �'� is the set of predecessor states
of �(� � . The agent incurs cost)+* 	 � �
���
� �,� �.- � if the execution of �/� � � ���
in �0� � results in ���1� � .) - ����� ���2- � is the minimax goal distance of �0� � ,
defined as the solution of the system of equations: ����� ��� �) if � � � ����� � , and ����� ��� �3�465 ��798;: �=< 3?>�@ � O 7
A ���
� : �CB � < � 	 � �
���
� ��� �;D ����� ��� ��� for all �E� � with �&F� � ��� � � . �����������
��
 is
the current state of the agent, and the minimal worst-case plan-execution cost from � ���������
��

to � ����� � is ����� � ���������	��
 � .

3.2 Heuristics and Variables

Minimax LPA* searches backward from � ������� to ����� �����
��
 and uses heuristics to focus its
search. The heuristics need to be non-negative and satisfy G � �
� ��� �) and G � �9� �H� �I-G � �
� ��� � �;D 	 � ��� �J���
� ��� � for all �
� ���K� ��� �;� � and �2� � � ��� � � with ���;� ����	�	 � �L� �K����� . In other
words, the heuristics G � �
� �,� � approximate the best-case plan-execution cost from � to ��� .
Minimax LPA* maintains two variables for each state that it encounters during the search.
The g-value of a state estimates its minimax goal distance. It is carried forward from
one search to the next one and can be used after each search to determine a plan that
minimizes the worst-case plan-execution cost from � ���������
��
 to � ��� � � . The rhs-value of
a state also estimates its minimax goal distance. It is a one-step lookahead value based
on the g-values of its successors and thus potentially better informed than its g-value. It
always satisfies the following relationship (Invariant 1):

" G � � �����) if � � � ����� � , and" G � � � � ��3�465 �,798;: �=< 3?>�@ � O 7
A ���
� : �CB � < � 	 � �9�C�
� ��� �;D � � ��� ��� for all ��� � with �MF� ����� � � . A
state is called locally consistent iff its g-value is equal to its rhs-value. Minimax LPA* also
maintains a priority queue N that always contains exactly the locally inconsistent states
(Invariant 2). Their priorities are always identical to their current keys (Invariant 3), where
the key O � ��� of � is the pair P 3�4Q5 � � � � ��� " G � � ���"�RD G � � ���������
��
 � � ��ST3�4Q5 � � � ����� " G � � �����VU , as
calculated by CalculateKey(). The keys are compared according to a lexicographic order-
ing.

3.3 Algorithm

Minimax LPA* operates as follows. The main function Main() first calls Initialize()
�
18 �

to set the g-values and rhs-values of all states to � � 03 � . The only exception is the rhs-
value of � ��� � � , that is set to zero

�
04 � . Thus, ����� � � is the only locally inconsistent state

and is inserted into the otherwise empty priority queue
�
02, 05 � . (Note that, in an actual

implementation, Minimax LPA* needs to initialize a state only once it encounters it during
the search and thus does not need to initialize all states up front. This is important because
the number of states can be large and only a few of them might be reached during the
search.) Then, Minimax LPA* calls ComputePlan() to compute a plan that minimizes the
worst-case plan-execution cost from ����� �����
��
 to � ������� � 19 � . If the agent has not reached
� ����� � yet

�
20 � , it executes the first action of the plan

�
22 � and updates �����������
��
 � 23 � .

It then scans for changed action costs
�
24 � . To maintain Invariants 1, 2, and 3, it calls

UpdateState() if some action costs have changed
�
28 � to update the rhs-values and keys of

the states potentially affected by the changed action costs as well as their membership in
the priority queue if they become locally consistent or inconsistent. It then recalculates the
priorities of all states in the priority queue

�
29-30 � . This is necessary because the heuristics

change when the agent moves, since they are computed with respect to � ���������	��
 . This only

procedure Main()�
17’ �:��(�)!*"*"+�,�-12�� M - > *B- ;�
18’ � while (��(�)!*"*"+�,�-9D2���<�="> ?)�
19’ � Refine the discretization, if possible (initially: construct the first discretization);�
20’ � Construct the state space that corresponds to the current discretization;�
21’ � Initialize();�
22’ � ComputePlan();�
23’ � if (� �!������()!*"*�+�,%-��;2��) stop with no solution;�
24’ � while (� ()!*"*�+�,%- D2�� <�=">�? AND � �!����� ()!*"*�+�,�- � D25�)�
25’ � ��� *�+���� =) M 2���()!*"*�+�,�- ;�
26’ � Execute S 25K�_T`;��� � > O F�GIH M ()!*"*�+�,%- J ��K"L M O F%P)�(�(H M ()!*"*�+�,%- Q > O J ��R���� (�)!*B*�+�,�-
	S

O
	� O �'$������ O �#� ;�
27’ � Set � (�)!*"*"+�,�- to the new state of the agent after the action execution;�
28’ � if ����()!*"*�+�,%- D687bC�RBR ��� � *�+���� =) M
/S��#��
29’ � 7bC�RBR ��� � *�+���� =) M
	S!�:2�7@C�RBR ��� � *�+���� =) M
	S���^ � � ()!*"*�+�,%- � ;�
30’ � 7bC�RBR ��� � *�+���� =) M �:257bC�RBR���� � *�+���� =) M �%^ � � ()!*"*�+�,%- � ;�
31’ � [1�.\B]�����(�)!*B*�+�,�-"�:25[1� \�]����"(�)!*"*"+�,�-"�'^ � � � *�+���� =) M � ;�
32’ � UpdateState(� � *�+���� =) M);�
33’ � for all �96 ��
34’ � U.Update(� , CalculateKey(�));�
35’ � ComputePlan();

Figure 4: Parti-game algorithm using Minimax LPA*

changes the priorities of the states in the priority queue but not which states are locally
consistent and thus in the priority queue. Finally, it recalculates a plan

�
31 � and repeats the

process.

ComputePlan() operates as follows. It repeatedly removes the locally inconsistent state
with the smallest key from the priority queue

�
10 � and expands it

�
11-16 � . It distinguishes

two cases. A state is called locally overconsistent iff its g-value is larger than it rhs-value.
We can prove that the rhs-value of a locally overconsistent state that is about to be expanded
is equal to its minimax goal distance. ComputePlan() therefore sets the g-value of the state
to its rhs-value

�
12 � . A state is called locally underconsistent iff its g-value is smaller than

it rhs-value. In this case, ComputePlan() sets the g-value of the state to infinity
�
15 � . In

either case, ComputePlan() ensures that Invariants 1, 2 and 3 continue to hold
�
13, 16 � . It

terminates as soon as � ��� �����
��
 is locally consistent and its key is less than or equal to the
keys of all locally inconsistent states.

Theorem 1 ComputePlan
���

of Minimax LPA* expands each state at most twice and thus terminates.
Assume that, after ComputePlan() terminates, one starts in 	 R"C��.�.\�

� and always executes an action����� � 	

�
in the current state 	 ��� that minimizes ����� � O 6 7bC�R�R�����
 S��

���
�
	
� � ��	��

����� �
	!�
�"�

until 	 ��#.S!$ is
reached (ties can be broken arbitrarily). Then, the plan-execution cost is no larger than the minimax
goal distance of 	 R"C�� �.\�
%� .

We can also prove several additional theorems about the efficiency of Minimax LPA*,
including the fact that it only expands those states whose g-values are not already correct
[5]. To reduce its search time, we optimize Minimax LPA* in several ways, for example, to
avoid unnecessary re-computations of the rhs-values [5]. We use these optimizations in the
experiments. A more detailed description, the intuition behind Minimax LPA*, examples
of its operation, and additional theorems and their proofs can be found in [5].

4 Using Minimax LPA* to Implement the Parti-Game Algorithm

Figure 4 shows how Minimax LPA* can be used to implement the parti-game algorithm in a
more efficient way than with uninformed search from scratch, using some of the functions
from Figure 3. Initially, the parti-game algorithm constructs a first (coarse) discretiza-
tion of the terrain

�
19’ � , constructs the corresponding state space (which includes setting

�����������
��
 to the state of the agent, � ������� to the state that includes the goal coordinates, and����	�	 � �9�C��� , ����	�	 � ��� , and
!�"�# ��� ��� according to the optimistic assumption that each action

deterministically reaches the intended state)
�
20’ � , and uses ComputePlan() to find a first

plan from scratch
�
21’-22’ � . If the minimax goal distance of � ���������
��
 is infinity, then it

stops unsuccessfully
�
23’ � . Otherwise, it repeatedly executes the action that minimizes the

worst-case plan-execution cost
�
26’-27’ � . If it observes an unknown action outcome

�
28’ � ,

then it records it
�
29’-31’ � , ensures that Invariants 1, 2 and 3 continue to hold

�
32’-34’ � ,

uses ComputePlan() to find a new plan incrementally
�
35’ � , and then continues to execute

actions until either � ���������
��
 is unsolvable or the agent reaches � ����� � � 24’ � . In the former
case, it refines the discretization

�
19’ � , uses ComputePlan() to find a new plan from scratch

rather than incrementally (because the discretization changes the state space substantially)�
20’-22’ � , and then repeats the process.

The heuristic of a state in our version of the parti-game algorithm approximates the Eu-
clidean distance from the center of the current cell of the agent to the center of the cell
that corresponds to the state in question. The resulting heuristics have the property that we
described in Section 3.2. Figures 1(b), (c), (d) and (f) show the heuristics, g-values and
rhs-values of all states directly after the call to ComputePlan(). All expanded states are
shown in gray, and all locally inconsistent states (that is, states in the priority queue) are
shown in bold.

It happens quite frequently that � ���������
��
 is unsolvable and the parti-game algorithm thus
has to refine the discretization. If � ���������
��
 is unsolvable, Minimax LPA* expands a large
number of states because it has to disprove the existence of a plan rather than find one. We
speed up Minimax LPA* for the special case where ����� �����
��
 is unsolvable but every other
state is solvable since it occurs about half of the time when � ���������
��
 is unsolvable. If states
other than � ���������
��
 become unsolvable, some of them need to be predecessors of � ��� �����
��
 .
To prove that � ���������
��
 is unsolvable but every other state is solvable, Minimax LPA* can
therefore show that all predecessors of �����������	��
 are solvable but �����������	��
 itself is not. To
show that all predecessors of � ��� �����
��
 are solvable, Minimax LPA* checks that they are
locally consistent, their keys are no larger than U.TopKey(), and their rhs-values are finite.
To show that �����������
��
 is unsolvable, Minimax LPA* checks that the rhs-value of � ���������
��

is infinite. We use this optimization in the experiments.

5 Experimental Results

An implementation of the parti-game algorithm can use search from scratch or incremental
search. It can also use uninformed search (using the zero heuristic) and informed search
(using the heuristic that we used in the context of the example from Figure 1). We compare
the four resulting combinations. All of them use binary heaps to implement the priority
queue and the same optimizations but the implementations with search from scratch do not
contain any code needed only for incremental search. Since all implementations move the
agent in the same way, we compare their number of state expansions, their total run times,
and their total search times (that is, the part of the run times spent in the search routines),
averaged over 25 two-dimensional terrains of size �)9)
)�� �)9)
) with 30 percent obstacle
density, where the resolution limit is one cell. In each case, the goal coordinates are in the
center of the terrain, and the start coordinates are in the vertical center and ten percent to
the right of the left edge. We also report the average of the ratios of the three measures for
each of the four implementations and the one with incremental heuristic search (which is
different from the ratio of the averages), together with their 95-percent confidence intervals.

Implementation of Parti- Ratio Ratio
Game Algorithm with . . . Expansions Expansions Run Time (Search Time) Run Time (Search Time)
Uninformed from Scratch 69,527,969 20.55 � 4.12 39 min 51 sec (37 min 43 sec) 11.83 � 3.52 (15.29 � 3.61)
Informed from Scratch 31,303,253 8.06 � 2.59 22 min 58 sec (20 min 49 sec) 6.08 � 2.50 (7.20 � 2.70)
Uninformed Incremental 2,628,879 1.23 � 0.03 1 min 54 sec (1 min 41 sec) 1.04 � 0.02 (1.19 � 0.05)
Informed Incremental 2,172,430 1.00 � 0.00 1 min 45 sec (1 min 28 sec) 1.00 � 0.00 (1.00 � 0.00)

The average number of searches, measured by calls to ComputePlan(), is 29,885 until the
agent reaches ����� � � . The table shows that the search times of the parti-game algorithm

are substantial due to the large number of searches performed (even though each search is
fast), and that the searches take up most of its run time. Thus, speeding up the searches is
important. The table also shows that incremental and heuristic search individually speed
up the parti-game algorithm and together speed it up even more.

The implementations of the parti-game algorithm in [3] and [6] make slightly different as-
sumptions from ours, for example, minimize state transitions rather than cost. Al-Ansari
reports that the original implementation of the parti-game algorithm with value iteration
performs about 80 percent and that his implementation with a simple uninformed incre-
mental search method performs about 15 percent of the state expansions of the implemen-
tation with uninformed search from scratch [6]. Our results show that our implementation
with Minimax LPA* performs about 5 percent of the state expansions of the implementa-
tion with uninformed search from scratch. While these results are not directly comparable,
we have also first results where we ran the original implementation with value iteration
and our implementation with Minimax LPA* on a very similar environment and the orig-
inal implementation expanded one to two orders of magnitude more states than ours even
though its number of searches and its final number of states was smaller. However, these
results are very preliminary since the time per state expansion is different for the differ-
ent implementations and it is future work to compare the various implementations of the
parti-game algorithm in a common testbed.

References

[1] S. Koenig and M. Likhachev. Incremental A*. In T. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT
Press.

[2] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithms for maintaining
shortest paths trees. Journal of Algorithms, 34(2):251–281, 2000.

[3] A. Moore and C. Atkeson. The parti-game algorithm for variable resolution reinforcement learn-
ing in multidimensional state-spaces. Machine Learning, 21(3):199–233, 1995.

[4] A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement learning with less data and less
time. Machine Learning, 13(1):103–130, 1993.

[5] M. Likhachev and S. Koenig. Speeding up reinforcement learning with incremental heuristic
minimax search. Technical Report GIT-COGSCI-2002/5, College of Computing, Georgia Insti-
tute of Technology, Atlanta (Georgia), 2002.

[6] M. Al-Ansari. Efficient Reinforcement Learning in Continuous Environments. PhD thesis, Col-
lege of Computer Science, Northeastern University, Boston (Massachusetts), 2001.

[7] G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the shortest-path
problem. Journal of Algorithms, 21:267–305, 1996.

