Stable Fixed Points of Loopy Belief
Propagation Are Minima of the Bethe
Free Energy

Tom Heskes
SNN, University of Nijmegen
Geert Grooteplein 21, 6252 EZ, Nijmegen, The Netherlands

Abstract

We extend recent work on the connection between loopy belief propagation
and the Bethe free energy. Constrained minimization of the Bethe free energy
can be turned into an unconstrained saddle-point problem. Both converging
double-loop algorithms and standard loopy belief propagation can be inter-
preted as attempts to solve this saddle-point problem. Stability analysis then
leads us to conclude that stable fixed points of loopy belief propagation must
be (local) minima of the Bethe free energy. Perhaps surprisingly, the converse
need not be the case: minima can be unstable fixed points. We illustrate this
with an example and discuss implications.

1 Introduction

Pearl’s belief propagation [1] is a popular algorithm for inference in Bayesian net-
works. It is exact in special cases, e.g., for tree-structured (singly-connected) net-
works with just Gaussian or just discrete nodes. But also on networks containing
cycles, so-called loopy belief propagation often leads to good performance (approx-
imate marginals close to exact marginals) [2]. The notion that fixed points of loopy
belief propagation correspond to extrema of the so-called Bethe free energy [3] has
been an important step in the theoretical understanding of this success. Empirically
it has further been observed that loopy belief propagation, when it does, converges
to a minimum. The main goal of this article is to understand why.

In Section 2 we will introduce loopy belief propagation in terms of a sum-product
algorithm on factor graphs [4]. The corresponding Bethe free energy is derived in
Section 3 from a variational point of view, indicating that we should be particularly
interested in minima. In Section 4 we show that minimization of the Bethe free
energy under the appropriate constraints is equivalent to an unconstrained saddle-
point problem. The converging double-loop algorithm, described in Section 3, as
well as the standard sum-product algorithm are in fact attempts to solve this saddle-
point problem. More specifically, (a damped version of) the sum-product algorithm
has the same local stability properties as a gradient descent-ascent procedure. Sta-
bility analysis of this gradient descent-ascent procedure then leads to the conclusion
in the title. With an example we illustrate that the converse need not be the case.
In Section 5 we discuss further implications and relations to other studies.

=)
i

(a) Graphical model of (b) Factor graph with potentials

1

P(xl, o 7xn) X \I/ij(mi,xj) = exp [wijxixj + m@,mz + ﬁ@ﬂ:]} .

exp |:Z” Wi TiT; + Zz (911'7,:| .

Figure 1: A Boltzmann machine. (a) Graphical representation of the probability
distribution. (b) Corresponding factor graph with a factor for each pair of nodes.

2 The sum-product algorithm on factor graphs

We start with a description of (loopy) belief propagation as the sum-product al-
gorithm on factor graphs [4]. We assume that the probability distribution over
(disjoint subsets of) variables zg factorizes over “factors” U, (X,):

P(xl,...,xg,...,xN):%H\PQ(XQ), (1)

with Z a proper normalization constant. We will use notation similar to [4]: upper-
case X, for the factors (“local function nodes”) and lowercase g for the variables.
B C « means that z3 is a neighbor of X, in the factor graph, i.e., is included in the
potential ¥, (X,). An example of the transformation of a Markov network into a
factor graph is shown in Figure 1. In a similar manner one can transform Bayesian
networks into factor graphs, where each factor contains the child and its parents [4].

On singly-connected structures, Pearl’s belief propagation algorithm [1] can be ap-
plied to compute the exact marginals (“beliefs”)

P(Xo) =Y P(X) and P(zg) =Y P(X).

X\a X\p

If the structure contains cycles, one can still apply (loopy) belief propagation, in an
attempt to obtain accurate approximations P, (X,) and Pg(x3).

Pseudo-code for the sum-product algorithm is given in Algorithm 1. In the factor-
graph representation we distinguish messages from factor « to variable 3, pio_g(xg),
and vice versa, {13 (23). The beliefs follow by multiplying the potential, a mere 1
for the variables and ¥, (X,) for the factors, with the incoming messages, see (1.3)
and (1.2) in Algorithm 1. The update for an outgoing message is the variable belief,
either calculated with the definition (1.2) or through the marginalization (1.6),
divided by the incoming message, see (1.4) and (1.5).

We interpret the update of factor-variable message jto_.3 in line 8 of Algorithm 1
as the only actual update: beliefs and variable-factor messages directly follow from
definitions in lines 11 to 15. For later reference we introduce the damped update

log 11675 (x5) = log pia—p(x5) + € [log i 5(w5) —log pa—p(ap)] . (2)
where pf!' refers to the result of the full update (1.5) and p to the previous message.

These and other seemingly arbitrary choices, among which the particular ordering

1: repeat Initial messages:

2: for all variables 3 do fra—p(zp) =1 (1.1)
3 for all factors a D 3 do .

4: if initial then Beliefs:)

5: initialize message (1.1) Ps(zg) = 7z H to—p(z8) (1.2)
6: else B adf

7 marginalize (1.6) 1

8 update message (1.5) Pa(Xa) = Z_aq/a(Xa)Bl;!;Mﬂ_'a(xﬁ) (1.3)
9: end if

10: end for Messages:

11: compute variable belief (1.2) Lpalzs) = Py(ap) (1.4)
12: for all factors o D 3 do fa—p(Ts)

13: compute message (1.4) ’ (25) = P.(xg) (1.5)
14: compute factor belief (1.3) amps Ua—alzg) '
15: end for with

16: end for P.(z5) = Z P.(Xa) (1.6)
17: until convergence Xonp

Algorithm 1: The sum-product algorithm on factor graphs.

of updates, follow naturally from the analysis below. Besides, for the results on
local stability we will consider the limit of small step sizes e, where any effects of
the ordering disappear. Last but not least, the description in Algorithm 1 is mainly
pedagogical and can be made more efficient in several ways.

3 The Bethe free energy

The exact distribution (1) can be written as the result of the variational problem
P(X)
] : (3)

Ha lIIOl(‘XVOt)
where here and in the following normalization and positivity constraints on proba-
bilities are implicitly assumed. Next we confine our search to “tree-like” probability
distributions of the form

P(X) x

P(X) = argmin Z P(X)log
Py

[lo Fo(Xo) ith ng = Z 1, (4)

= Wi
[1s Ps(wp)" =

the number of neighboring factors of variable 5. Here P,(X,) and Ps(zg) are
interpreted as (approximate) local marginals that should normalize to 1, but should
also be consistent, i.e., obey

VVasp Palzp) = Ps(zs) ()
with P,(zg) as in (1.6). The denominator in (4) prevents double-counting. For
singly-connected structures, it can be shown that the exact solution P(X) is of this
form, with proportionality constant equal to 1 and where P,(X,) = P(X,) and
Ps(xg) = P(xzg). For structures containing cycles, this need not be the case, but
we can still assume it to be true approximately. Plugging (4) into the objective (3)
and implementing the above assumptions, we obtain the Bethe free energy

F(P) = 30 X Pal(Xa) o | g5 = Yt = 1) 3 Paaa) 0w Patan) . ()
o X. a a 3

rp

Initial messages and beliefs:
wa—a(xg) =1and Py(zg) =1 2.1
1: for all « and 8 C « do _ﬁ (ﬁ) (B) @1)
2 initialize (2.1) Beliefs: L
. 1
3: end for Ps(ap) = - 1T #o—s(zs) (2.2)
4: repeat B adp
5: for all factors a do 1 .
6: update potential (2.4) Po(Xa) = Z_\Iia(Xa) H tp—a(zs)(2.3)
7: update variable belief (2.3) “ BCo
8: end for Potential update:
9: inner loop with (2.2) and (2.3) .
10: until convergence log o (Xa) = log \Illo‘(XO‘)
na —
+3 L log PM(xp) (2.4)
BCa ns

Algorithm 2: Double-loop algorithm for minimizing the Bethe free energy. The
inner loop is Algorithm 1 with redefinitions of the factor and variable beliefs.

Minus the Bethe free energy is an approximation, but not a bound of the loglike-
lihood log Z. A key observation in [3] is that the fixed points of the sum-product
algorithm, described in the previous section, correspond to extrema of the Bethe
free energy under the constraints (5).

The above derivation suggests that we should be specifically interested in minima
of the Bethe free energy, not “just” stationary points. The resulting constrained
minimization problem is well-defined (the Bethe free energy is bounded from below),
but not necessarily convex, mainly because of the negative Pslog Pg-terms. The
crucial trick, implicit or explicit in recently suggested procedures is to bound [5] or
clamp [6] the possibly concave part (outer loop: recompute the bound) and solve
the remaining convex problem (inner loop: maximization with respect to Lagrange
multipliers; see below). Here we propose to use the linear bound

— Y Py(wp)log Ps(ap) < — > Ps(ap)log P34 (zp) , (7)

with Pgld (x) from the result of the previous inner loop. The (convex) bound of
the Bethe free energy then boils down to

> F(P),

Py(X4)

Fround(P) = Py(Xa)lo R~

(7= S s | 2

if we define W, as in (2.4). The outer loop corresponds to a reset of the bound,

i.e., at the start of the inner loop we have Fyouna(P) = F(P). In the inner loop

(see the next section for its derivation), we solve the remaining convex constrained

minimization problem with the method of Lagrange multipliers. At the end of the
inner loop, we then have F(P™") < Fhound(P*V) < Fhouna(P) = F(P).

4 Saddle-point problem

In this section we will translate the (non-convex) minimization of the Bethe free en-
ergy under linear constraints into an equivalent (non-convex/concave) saddle-point

problem. We replace the bound (7) with an explicit minimization over auxiliary
variables v (see also [7]; an alternative interpretation is a Legendre transform):

—ZPﬁ(iﬂﬁ)lOgPﬁ(wﬁ)=f%ﬂ = vs(@s) Pa(s) +log | Y e @) | 5. (8)

rg rg rg

Substitution into (6) then yields a constrained minimization problem, where the
minimization is w.r.t. { Py, P3,vs} under constraints (5). Using (any other convex
combination will work as well, but this symmetric one is most convenient)

Po(up) = é S Palap)
aDf

we can get rid of all dependencies on Pg, both in (8) and in the constraints (5),
which simplifies the following analysis and derivations considerably. For fixed vz,
the remaining minimization problem is convex in P, with linear constraints and
can thus be solved with the method of Lagrange multipliers. In terms of these
multipliers A\ and the auxiliary variables 7, the solution for P, reads

Pu(Xe) = 5y VolXo)exp 3 Reole) + 2w | O

with Z4 (X,) the proper normalization and

1
Aap(8) = Aap(zg) — P > Aarplp) -
a’'Di

Substituting this back into the Lagrangian, we end up with an unconstrained saddle-
point problem of the type min, maxy F(A,v) with

F(\7) = logZa(\y) = Y (ng—1)log | Y ers(s)

B zg

From the fixed-point equations we derive the updates

new 1
ap (t3) = Aap(zs) —log Palzs) + — > log Par(25) (10)
a’'Df
new 1
V(@) = log |— > Pal(ws)| , (11)
g aDf

with P, (xg) the marginal computed from P, (X,) as in (9).

Proof. Introduce a new set of auxiliary variables Z by writing

. 1
—log Zo = max{ —log Za+ [1= = > Pa(Xa)Za | ¢ -
z Zao £

o4

Next consider maximizing Aog(zg) for a particular variable 8 and all a D 3, while keeping

all others as well as all Z, fixed (by convention, we update Zo t0 Zqo after each update of
X’s). Taking derivatives, we find that the new A" should satisfy

xnew snew
eras 8P, (z5) 1 Z e als (W)Pa/(xg)

e;\aﬂ(xﬁ) ng e;\a//g(x/i)
a’Dp

new

Any update of the form Ag3"(x5) = —log Pa(zs) + Aap(zs) + vg(xs) will do, where

ew €

choosing vs(zs) such that ALGY = ALGY yields (10).

The updates (10) and (11) are properly aligned with the respective gradients and
satisfy the saddle-point equations

FN™,7) 2 F(A,7) =2 F(AA"Y) (12)

This saddle-point problem is concave in A, but not necessarily convex in 7. One
way to guarantee convergence to a “correct” saddle point is then to solve the (up
to irrelevant linear translations unique) maximization with respect to A in an inner
loop, followed by an update of v in the outer loop. This is precisely the double-
loop algorithm sketched in the previous section. We obtain the description given in
Algorithm 2 if we substitute (up to irrelevant constants)

v8(xg) = log P34 (x5), Aap(as) =logps_alzs), and Aag(zs) = —log fia—p(zs) .

Note that in the inner loop of the double-loop algorithm the scheduling does mat-
ter. The ordering described in Algorithm 1 - run over variables 8 and update all
corresponding messages from and to neighboring factors before moving on to the
next variable - satisfies (12) without damping.

An alternative approach is to apply (damped versions of) the updates (10) and
(11) in parallel. This can be loosely interpreted as doing gradient descent-ascent.
Gradient descent-ascent is a standard procedure for solving saddle-point problems
and guaranteed to converge to the correct solution if the saddle-point problem is
indeed convex/concave (see e.g. [8]). Similarly, it is easy to show that gradient
descent-ascent applied to a non-convex/concave problem is locally stable at a par-
ticular saddle point {A*,~*}, if and only if the objective is locally convex/concave.
The statement in the title now follows from two observations.

1. The damped version (2) of the sum-product algorithm has the same local stability
properties as a gradient descent-ascent procedure derived from (10) and (11).

Proof. We replace (11) with

. 1
B @e) = o > " log Pa(ws) - (13)
aDf

At a saddle point P.(zg) = Ps(z3) Vaos and thus the difference between the logarithmic
average (13) and the linear average (11) as well as its derivatives vanish. Consequently,
(13) has the same local stability properties as (11). Now consider parallel application of
a damped version of (10), with step size ¢, and (13), with step size nge. We obtain the
damped version (2) of the standard sum-product algorithm, in combination with the other
definitions in Algorithm 1, when we apply the definitions

—1

< n, 1

10g f13—a(13) = Aap(25) + ———75(z3) and log pia—s(zs) = n_BVB(fEﬁ) — Aap(zp) -

2. Local stability of the gradient descent-ascent procedure at {A*,~v*} implies that
the corresponding P, is at a minimum of the Bethe free energy and that all
constraints are satisfied. The converse need not be the case.

Proof. Local stability of the gradient descent-ascent procedure and thus the sum-product
algorithm depends on the local curvature of F(},), defined through the Hessian matrices

PF(\7)

Hyy =
Y 8’}/8’7T

{A*v*}

@ (b) (© (d)

1 1 1

N

§ 10 10 10 10
GE)’ 0 0 0 \/ 0 Af
g 10 10 10 10 W
7 =1 -1 -1 -1
2 10 10 10 10
0 50 0 500 O 10 20 0 1000 2000
#iterations #iterations #iterations #iterations

Figure 2: Loopy belief propagation on a Boltzmann machine with 4 nodes, weights
(upper diagonal) (3,2,2;1, 3; —3), and thresholds (0,0,1,1). Plotted is the Kullback-
Leibler divergence between the exact and the approximate single-node marginals.
(a) No damping leads to somewhat erratic cyclic behavior. (b) Damping with step
size 0.1 yields a smoother cycle, but no convergence. (c¢) The double-loop algorithm
does converge to a stable solution. (d) This solution is unstable under standard
loopy belief propagation (here again with step size 0.1).

and Hxy. Gradient descent-ascent is locally stable iff H,, is positive and Hx negative
(semi-)definite. The latter is true by construction. The “total” curvature, defined through

OF*(v)

Yy 8’}/8’7T -

with F*(v) = m);\ixF()\,'y) ,

can be shown to obey

H:;w =Hyy — ’Y/\H;)\lHA”/ .
With Hx» negative definite, we then conclude that if H,, is positive definite (gradient
descent-ascent locally stable), then so is HJ, (local minimum). The converse, however,
need not be the case: H, can be positive definite (minimum) where H, has one or more
negative eigenvalues (gradient descent-ascent unstable). An example of this phenomenom
is F(\,7) = =A% — 42 4+ 4\y.

Non-convergence of loopy belief propagation on a Boltzmann machine is shown in
Figure 2. Typically, standard loopy belief propagation converges to a stable solu-
tion without damping. In rare cases, damping is required to obtain convergence and
in very rare cases, even considerable damping does not help, as in Figure 2. The
double-loop algorithm does converge and the solution obtained is indeed unstable
under standard belief propagation, even with damping. The larger the weights, the
more often these instabilities seem to occur. This is consistent with the empiri-
cal observation that the max-product algorithm (“belief revision”) is typically less
stable than the sum-product algorithm: max-product on a Boltzmann machine cor-
responds to (a properly scaled version of) the sum-product algorithm in the limit of
infinite weights. The example in Figure 2 is about the smallest that we have found:
we have observed these instabilities in many other (larger) instances of Markov net-
works, as well as directed Bayesian networks, yet not in structures with just a single
loop. The latter seems consistent with the notion that not only for trees, but also
for networks with a single loop, the Bethe free energy is still convex.

5 Discussion

The above gradient descent-ascent interpretation shows that loopy belief propaga-
tion is more than just fixed-point iteration: the updates tend to move in the right
uphill-downhill directions, which might explain its success in practical applications.
Still, loopy belief propagation can fail to converge, and apparently for two different

reasons. The first rather innocent one is a too large step size, similar to taking
a too large “learning parameter” in gradient-descent learning. Straightforwardly
damping the updates, as in (2), is then sufficient to converge to a stable fixed point.
Note that this damping is in the logarithmic domain and thus slightly different
from the damping linear in the messages as described in [2]. The damping proposed
in [7] is restricted to the Lagrange multipliers A and may therefore not share the
nice properties of the damping discussed here. Local stability in the limit of small
step sizes is independent of the scheduling of messages, but in practice particular
schedules can still favor others and, for example, be stable with larger step sizes or
converge more rapidly. For example, in [9] the message updates follow the structure
of a spanning tree, which empirically seems to help a lot.

The other more serious reason for non-convergence is inherent instability of the
fixed point, even in the limit of infinitely small step sizes. In that case, loopy belief
propagation just does not work and one can resort to a more tedious double-loop
algorithm to guarantee convergence to a local minimum. The double-loop algorithm
described here is similar to the CCCP algorithm of [5]. The latter implicitly uses
a less strict bound, which makes it (slightly) less efficient and arguably a little
more complicated. Whether double-loop algorithms are worth the effort is an open
question: in several simulation studies a negative correlation between the quality
of the approximation and the convergence of standard belief propagation has been
found [6, 7, 10], but still without a convincing theoretical explanation.

Acknowledgments

I would like to thank Wim Wiegerink and Onno Zoeter for many helpful suggestions
and interesting discussions and the Dutch Technology Foundation STW for support.

References

[1] J. Pearl. Probabilistic Reasoning in Intelligent systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, CA, 1988.

[2] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate
inference: An empirical study. In UAI’99, pages 467475, 1999.

[3] J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. In
NIPS 13, pages 689-695, 2001.

[4] F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2):498-519, 2001.

[5] A. Yuille. CCCP algorithms to minimize the Bethe and Kikuchi free energies:
Convergent alternatives to belief propagation. Neural Computation, 14:1691—
1722, 2002.

[6] Y. Teh and M. Welling. The unified propagation and scaling algorithm. In
NIPS 14, 2002.

[7] T. Minka. The EP energy function and minimization schemes. Technical
report, MIT Media Lab, 2001.

[8] S. Seung, T. Richardson, J. Lagarias, and J. Hopfield. Minimax and Hamilto-
nian dynamics of excitatory-inhibitory networks. In NIPS 10, 1998.

[9] M. Wainwright, T. Jaakola, and A. Willsky. Tree-based reparameterization for
approximate estimation on loopy graphs. In NIPS 1/, 2002.

[10] T. Heskes and O. Zoeter. Expectation propagation for approximate inference
in dynamic Bayesian networks. In UAI-2002, pages 216-223, 2002.

