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Abstract

In this paper, we propose a Bayesian framework, which constructs
shared-state triphone HMMs based on a variational Bayesian approach,
and recognizes speech based on the Bayesian prediction classification;
variational Bayesian estimation and clustering for speech recognition
(VBEC). An appropriate model structure with high recognition perfor-
mance can be found within a VBEC framework. Unlike conventional
methods, including BIC or MDL criterion based on the maximum likeli-
hood approach, the proposed model selection is valid in principle, even
when there are insufficient amounts of data, because it does not use
an asymptotic assumption. In isolated word recognition experiments,
we show the advantage of VBEC over conventional methods, especially
when dealing with small amounts of data.

1 Introduction

A statistical modeling of spectral features of speech (acoustic modeling) is one of the most
crucial parts in the speech recognition. In acoustic modeling, a triphone-based hidden
Markov model (triphone HMM) has been widely employed. The triphone is a context
dependent phoneme unit that considers both the preceding and following phonemes. Al-
though the triphone enables the precise modeling of spectral features, the total number of
triphones is too large to prepare sufficient amounts of training data for each triphone. In
order to deal with the problem of data insufficiency, an HMM state is usually shared among
multiple triphone HMMs, which means the amount of training data per state inflates. Such
shared-state triphone HMMs (SST-HMMs) can be constructed by successively clustering
states based on the phonetic decision tree method [4] [7]. The important practical problem
that must be solved when constructing SST-HMM s is how to optimize the total number
of shared states adaptively to the amounts of available training data. Namely, maintaining
the balance between model complexity and training data size is quite important for high
generalization performance.

The maximum likelihood (ML) is inappropriate as a model selection criterion since ML
increases monotonically as the number of states increases. Some heuristic thresholding
is therefore necessary to terminate the partitioning. To solve this problem, the Bayesian
information criterion (BIC) and minimum description length (MDL) criterion have been



employed to determine the tree structure of SST-HMMs [2] [5] !. However, since the
BIC/MDL is based on an asymptotic assumption, it is invalid in principle when the number
of training data is small because of the failure of the assumption.

In this paper, we present a practical method within the Bayesian framework for estimat-
ing posterior distributions over parameters and selecting an appropriate model structure of
SST-HMMs (clustering triphone HMM states) based on a variational Bayesian (VB) ap-
proach, and recognizing speech based on the Bayesian prediction classification: variational
Bayesian estimation and clustering for speech recognition (VBEC). Unlike the BIC/MDL,
VB does not assume asymptotic normality, and it is therefore applicable in principle, even
when there are insufficient data. The VB approach has been successfully applied to model
selection problems, but mainly for relatively simple mixture models [1] [3] [6] [8]. Here,
we try to apply VB to SST-HMMs with more a complex model structure than the mixture
model and evaluate the effectiveness through a large-scale real speech recognition experi-
ment.

2 Variational Bayesian framework

First, we briefly review the VB framework. Let O be a given data set. In the Bayesian
approach we are interested in posterior distributions over model parameters, p(©|O,m),
and the model structure, p(m|O). Here, O is a set of model parameters and m is an index
of the model structure. Let us consider a general probabilistic model with latent variables.
Let Z be a set of latent variables. Then the model with a fixed model structure m can be
defined by the joint distribution p(O, Z|©,m).

In VB, variational posteriors ¢(©|0,m), ¢(Z|O,m), and g(m|O) are introduced to ap-
proximate the true corresponding posteriors. The optimal variational posteriors over © and
Z, and the appropriate model structure that maximizes the optimal ¢(m|QO) can be obtained
by maximizing the following objective function:
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w.rt. ¢(©|0,m),q(Z|0,m), and m. Here (f(z)),(,, denotes the expectation of f(x)

w.r.t. p(x). p(©|m) is a prior distribution. This optimization can be effectively performed
by an EM-like iterative algorithm (see [1] for the details).
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3 Applying a VB approach to acoustic models

3.1 Output distributions and prior distributions

We attempt to apply a VB approach to a left-to-right HMM, which has been widely used
to represent a phoneme unit in acoustic models for speech recognition, as shown in Figure
1. Let O = {O" € RP : t = 1,...,T} be a sequential data set for a phoneme unit. The
output distribution in an HMM is given by

T t
p(O,S,V|®,m) = Ht:l Agi—1 g1 Cytyt bty (O )a 2
where S is a set of sequences of hidden states, V' is a set of sequences of Gaussian mixture

components, and s* and v* denote the state and mixture components at time ¢. S and V' are
sets of discrete latent variables that correspond to Z mentioned above. a;; denotes the state

IThese criteria have been independently proposed, but they are practically the same. Therefore,
we refer to them hereafter as BIC/MDL.



Figure 1: Hidden Markov model for each
a,) a,) phoneme unit. A state is represented by
the Gaussian mixture distribution below

W M ,/V\/L the state. There are three states and three
/

ian components in this figure.
<t Gaussian components in this figure

Gaussian mixture for state i

transition probability from state 7 to state j, and c;y, is the k-th weight factor of the Gaussian
mixture for state j. b, (= N(O'| I, Xjx)) denotes the Gaussian distribution with mean
vector fu;; and covariance Xjx. © = {aij, Cjk, thjp, 2 ik Yi,j=1,..,J,k=1,..,L}is
a set of model parameters. J denotes the number of states in an HMM and L denotes the
number of Gaussian components in a state. In this paper, we restrict covariance matrices in
the Gaussian distribution to diagonal ones. The conjugate prior distributions are assumed
to be as follows:

p@m) = I, Pllay }hale)Dem o)

D
X N (g5, (€)' 550) H . g(Z;k,l,d|n07 RY, ). 3)

d
= {¢°, ", ka§0 n°, R k} is a set of hyperparameters. We assume the hyperparam-
eters are constants. In Eq. (3) D denotes a Dirichlet distribution and G denotes a gamma
distribution.

3.2 Optimal variational posterior distribution §(©|O,m)

From the output distributions and prior distributions in section 3.1, the optimal variational
posterior distribution §(©|O, m) can be obtained as:
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b= {QE, @y Vjk, £~ 1, Rj 1 } is a set of posterior distribution parameters defined as:
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E|O,m) and (j, = X, 1( - 71; denotes the transition probability from state i to state j at

[~ ~t o o~ ot .
® is composed of ’ng =q(s' =1i,s
time t. 5; & denotes the occupation probability on mixture component % in state j at time ¢.

3.3 Optimal variational posterior distribution ¢(S, V|0, m)

From the output distributions and prior distributions in section 3.1, the optimal variational
posterior distribution over latent variables (S, V|O, m) can be obtained as:

T -
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U(y) is a digamma function. From these results, transition and occupation probability ﬁfj

and ~}jj can be obtained by using either a deterministic assignment via the Viterbi algorithm
or a probabilistic assignment via the Forward-Backward algorithm. Thus, G(©]O, m) and
G(S, V|0, m) can be calculated iteratively that result in maximizing F,.

4 VB training algorithm for acoustic models

Based on the discussion in section 3, a VB training algorithm for an acoustic model based
on an HMM and Gaussian mixture model with a fixed model structure m is as follows:

Step 1) Initialize 3/,;[7 = 0], ¢}; [T = 0] and set ®°.
Step 2) Compute ¢(S, V|0, m)[r + 1] using 7};[7], ~fj [7] and ®°.

Step 3) Update 7;;[7+1] and ¢f;[7+1] using ¢(S, V|0, m)[7+1] via the Viterbi algorithm

or Forward-Backward algorithm.

Step 4) Compute ®[7 + 1] using ¥l +1], ~fj [ + 1] and ®°.

Step 5) Compute ¢(©|0,m)[r + 1] using ®[r + 1] and calculate F,,[r] based on
q(©|0,m)[r + 1] and ¢(S, V|0, m)[T + 1].

Step 6) If |(Fo[7 + 1] — Fin[7])/Fin [T + 1]| < €, then stop; otherwise set 7 «— 7 + 1 and
go to Step 2.

7 denotes an iteration count. In our experiments, we employed the Viterbi algorithm in
Step 3.

5 Variational Bayesian estimation and clustering for speech
recognition

In the previous section, we described a VB training algorithm for HMMs. Here, we explain
VBEC, which constructs an acoustic model based on SST-HMMs and recognizes speech
based on the Bayesian prediction classification. VBEC consists of three phases: model
structure selection, retraining and recognition. The model structure is determined based on
triphone-state clustering by using the phonetic decision tree method [4] [7]. The phonetic
decision tree is a kind of binary tree that has a phonetic “Yes/No” question attached at each
node, as shown in Figure 2. Let 2(n) denote a set of states held by a tree node n. We
start with only a root node (n = 0), which holds a set of all the triphone HMM states
©2(0) for an identical center phoneme. The set of triphone states is then split into two sets,
Q(ny) and Q(ny ), which are held by two new nodes, ny and ny, respectively, as shown
in Figure 3. The partition is determined by an answer to a phonetic question such as “is
the preceding phoneme a vowel?” or “is the following phoneme a nasal?” We choose a
particular question for a node that maximize the gain of 7" when the node is split into two
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Figure 2: A set of all triphone HMM Figure 3: Splitting a set of triphone

states */a(z)/* is clustered based on the HMM states Q2(n) into two sets Q(ny )

phonetic decision tree method. Q(nn) by answering phonetic questions
according to an objective function.

nodes, and if all the questions decrease F™ after splitting, we stop splitting. We continue
this splitting successively for every new set of states to obtain a binary tree, each leaf node
of which holds a clustered set of triphone states. The states belonging to the same cluster
are merged into a single state. A set of triphones is thus represented by a set of shared-
state triphone HMMs (SST-HMMs). An HMM, which represents a phonemic unit, usually
consists of a linear sequence of three or four states. A decision tree is produced specifically
for each state in the sequence, and the trees are independent of each other.

Note that in the triphone-states clustering mentioned above, we assume the following con-
ditions to reduce computations:

e The state assignments while splitting are fixed.
e A single Gaussian distribution for one state is used.
o Contributions of the transition probabilities to the objective function are ignored.

By using these conditions, latent variables are removed. As a result, all variational posteri-
ors and F,,, can be obtained as closed forms without an iterative procedure.

Once we have obtained the model structure, we retrain the posterior distributions us-
ing the VB algorithm given in section 4. In recognition, an unknown datum x! for a
frame ¢ is classified as the optimal phoneme class y using the predictive posterior clas-
sification probability p(y|x!, O,m) = p(y)p(x'|y, O,m)/p(x?) for the estimated model
structure 7M. Here, p(y) is the class prior obtained by language and lexcon models, and
p(xt|y, O,m) is the predictive density. If we approximate the true posterior p(0|y, O, m)
by the estimated variational posteriors G(O|y, O, m), p(xt|y, O, m) can be calculated by
p(z'ly,0,m) ~ [ p(x'|y, ©,m)§(Oly, O,m)dO. Therefore, the optimal class y can be
obtained by

y = argmax p(y'|z", 0, i) ~ arg maxp(y') / p(@'ly,©,m)§(Oly,0,m)de.  (8)
Y y’

In the calculation of (8), the integral over Gaussian means and covariances for a frame can
be solved analytically to be Student distributions. Therefore, we can compute a Bayesian
predictive score for a frame, and then can compute a phoneme sequence score by using
the Viterbi algorithm. Thus, we can construct a VBEC framework for speech recognition
by selecting an appropriate model structure and estimating posterior distributions with the
VB approach, and then obtaining a recognition result based on the Bayesian prediction
classification.



Table 1: Acoustic conditions

Table 2: Prepared HMM

Sampling rate 16 kHz
Quantization 16 bit # of states 3 (Left to right)
Feature vector 12 - order MFCC # of phoneme categories || 27

with A MFCC Output distribution Single Gaussian
Window Hamming
Frame size/shift || 25/10 ms

6 Experiments

We conducted two experiments to evaluate the effectiveness of VBEC. The first experi-
ment compared VBEC with the conventional ML-BIC/MDL method for variable amounts
of training data. In the ML-BIC/MDL, retraining and recognition are based on the ML
approach and model structure selection is based on the BIC/MDL. The second experiment
examined the robustness of the recognition performance with preset hyperparameter values
against changes in the amounts of training data.

6.1 VBEC versus ML-BIC/MDL

The experimental conditions are summarized in Tables 1 and 2. As regards the hyperpa-
rameters, the mean and variance values of the Gaussian distribution were set at v/° and
R in each root node, respectively, and the heuristics were removed for ° and R°. The
determination of £° and 1° was still heuristic. We set £© = n° = 0.01, each of which were
determined experimentally. The training and recognition data used in these experiments
are shown in Table 3.

The total training data consisted of about 3,000 Japanese sentences spoken by 30 males.
These sentences were designed so that the phonemic balance was maintained. The total
recognition data consisted of 2,500 Japanese city names spoken by 25 males. Several
subsets were randomly extracted from the training data set, and each subset was used to
construct a set of SST-HMMs. As a result, 40 sets of SST-HMMs were prepared for several
subsets of training data.

Figures 4 and 5 show the recognition rate and the total number of states in a set of SST-
HMMs, according to the varying amounts of training data. As shown in Figure 4, when
the number of training sentences was less than 40, VBEC greatly outperformed the ML-
BIC/MDL (A). With ML-BIC/MDL (A), an appropriate model structure was obtained by

maximizing an objective function IBIC/MDL 1t m based on BIC/MDL defined as:
S}
gienivt — 0,m) - O og 7y, ©

where, [(O, m) denotes the likelihood of training data O for a model structure m, #(0gq)
denotes the number of free parameters for a set of states €2, and Tq gy denotes the total

frame number of training data for a set of states €2(0) in a root node, as shown in Figure 2.

The term #(SQ) log T (o) in Eq.(9) is regarded as a penalty term added to a likelihood, and
is dependent on the number of free parameters #(Oq) and total frame number Ty of the
training data. ML-BIC/MDL (A) was based on the original definitions of BIC/MDL and
has been widely used in speech recognition [2] [5]. With such small amounts of training

data, there was a great difference between the total number of shared states with VBEC and

Table 3: Training and recognition data

Training
Recognition

Continuous speech sentences (Acoustical Society of Japan)
100 city names (Japan Electronic Industry Development Association)
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Figure 4: Recognition rates according to the
amounts of training data based on the VBEC
and ML-BIC/MDL (A) and (B). The hori-
zontal axis is scaled logarithmically.
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ML-BIC/MDL (A) (Figure 5). This suggests that VBEC, which does not use an asymptotic
assumption, determines the model structure more appropriately than the ML-BIC/MDL
(A), when the training data size is small.

Next, we adjusted the penalty term of ML-BIC/MDL in Eq. (9) so that the total numbers of
states for small amounts of data were as close as possible to those of VBEC (ML-BIC/MDL
(B) in Figure 5). Nevertheless, the recognition rates obtained by VBEC were about 15 %
better than those of ML-BIC/MDL (B) with fewer than 15 training sentences (Figure 4).
With such very small amounts of data, the VBEC and ML-BIC/MDL (B) model structures
were almost same (Figure 5). It is assumed that the effects of the posterior estimation and
the Bayesian prediction classification (Eq. (8)) suppressed the over-fitting of the models to
very small amounts of training data compared with the ML estimation and recognition in
ML-BIC/MDL (B).

With more than 100 training sentences, the recognition rates obtained by VBEC converged
asymptotically to those obtained by ML-BIC/MDL methods as the amounts of training data
became large.

In summary, VBEC performed as well or better for every amount of training data. This
advantage was due to the superior properties of VBEC, e.g., the appropriate determination
of the number of states and the suppression effect on over-fitting.

6.2 Influence of hyperparameter values on the quality of SST-HMMs

Throughout the construction of the model structure, the estimation of the posterior distri-
bution, and recognition, we used a fixed combination of hyperparameter values, £° = " =
0.01. In the small-scale experiments conducted in previous research [1] [3] [6] [8], the
selection of such values was not a major concern. However, when the scale of the target
application is large, the selection of hyperparameter values might affect the quality of the
models. Namely, the best or better values might differ greatly according to the amounts of
training data. Moreover, estimating appropriate hyperparameters with training SST-HMMs
needs so much time that it is impractical in speech recognition. Therefore, we examined
how robustly the SST-HMMs produced by VBEC performed against changes in the hyper-
parameter values with varying amounts of training data.

We varied the values of hyperparameters £° and n° from 0.0001 to 1, and examined the
speech recognition rates in two typical cases; one in which the amount of data was very
small (10 sentences) and one in which the amount was fairly large (150 sentences). Tables



Table 4: Recognition rates in each prior  Table 5: Recognition rates in each prior
distribution parameter when using train-  distribution parameter when using train-

ing data of 10 sentences. ing data of 150 sentences.
&° 1’ &° UN
10° 10" 1072 107° 10~ * 10° 10—t 1072 107° 10~ *

10° 1.0 663 659 665 66.1 10° 220 935 94.0 931 923
1071 | 22 659 66.2 66.7 66.1 107! | 493 943 93.9 933 925
1072 | 312 66.1 66.5 663 655 1072 | 83.5 944 932 923 923
1073 | 60.3 66.2 66.7 66.1 655 1073 | 925 93.8 933 925 924
107* | 66.5 66.6 663 655 64.6 1074 | 941 932 923 923 922

4 and 5 show the recognition rates for each combination of hyperparameters. We can
see that the hyperparameter values for acceptable performance are broadly distributed for
both very small and fairly large amounts of training data. Moreover, roughly the ten best
recognition rates are highlighted in the tables. The combinations of hyperparameter values
that achieved the highlighted recognition rates were similar for the two different amounts of
training data. Namely, appropriate combinations of hyperparameter values can consistently
provide good performance levels regardless of the varying amounts of training data.

In summary, the hyperparameter values do not greatly influence the quality of the SST-
HMMs. This suggests that it is not necessary to select the hyperparameter values very
carefully.

7 Conclusion

In this paper, we proposed VBEC, which constructs SST-HMMs based on the VB approach,
and recognizes speech based on the Bayesian prediction classification. With VBEC, the
model structure of SST-HMM s is adaptively determined according to the amounts of given
training data, and therefore a robust speech recognition system can be constructed. The first
experimental results, obtained by using real speech recognition tasks, showed the effec-
tiveness of VBEC. In particular, when the training data size was small, VBEC significantly
outperformed conventional methods. The second experimental results suggested that it is
not necessary to select the hyperparameter values very carefully. From these results, we
conclude that VBEC provides a completely Bayesian framework for speech recognition
which effectively hundles the sparse data problem.
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