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Abstract 

We explore the consequences of viewing semantic association as 
the result of attempting to predict the concepts likely to arise in a 
particular context. We argue that the success of existing accounts 
of semantic representation comes as a result of indirectly addressing 
this problem, and show that a closer correspondence to human data 
can be obtained by taking a probabilistic approach that explicitly 
models the generative structure of language. 

1 Introduction 

Many cognitive capacities, such as memory and categorization, can be analyzed as 
systems for efficiently predicting aspects of an organism's environment [1]. Previ­
ously, such analyses have been concerned with memory for facts or the properties 
of objects, where the prediction task involves identifying when those facts might 
be needed again, or what properties novel objects might possess. However, one of 
the most challenging tasks people face is linguistic communication. Engaging in 
conversation or reading a passage of text requires retrieval of a variety of concepts 
from memory in response to a stream of information. This retrieval task can be 
facilitated by predicting which concepts are likely to be needed from their context, 
having efficiently abstracted and stored the cues that support these predictions. 

In this paper, we examine how understanding the problem of predicting words 
from their context can provide insight into human semantic association, exploring 
the hypothesis that the association between words is at least partially affected 
by their statistical relationships. Several researchers have argued that semantic 
association can be captured using high-dimensional spatial representations, with 
the most prominent such approach being Latent Semantic Analysis (LSA) [5]. We 
will describe this procedure, which indirectly addresses the prediction problem. We 
will then suggest an alternative approach which explicitly models the way language 
is generated and show that this approach provides a better account of human word 
association data than LSA, although the two approaches are closely related. The 
great promise of this approach is that it illustrates how we might begin to relax some 
of the strong assumptions about language made by many corpus-based methods. 
We will provide an example of this, showing results from a generative model that 
incorporates both sequential and contextual information. 



2 Latent Semantic Analysis 

Latent Semantic Analysis addresses the prediction problem by capturing similarity 
in word usage: seeing a word suggests that we should expect to see other words 
with similar usage patterns. Given a corpus containing W words and D documents, 
the input to LSA is a W x D word-document co-occurrence matrix F in which fwd 
corresponds to the frequency with which word w occurred in document d. This 
matrix is transformed to a matrix G via some function involving the term frequency 
fwd and its frequency across documents fw .. Many applications of LSA in cognitive 
science use the transformation 

2:D_ Wlog{W} 
H - _ d-l f w f w . 

w - logD ' gwd = IOg{fwd + 1}(1 - Hw) (1) 

where Hw is the normalized entropy of the distribution over documents for each 
word. Singular value decomposition (SVD) is applied to G to extract a lower 
dimensional linear subspace that captures much of the variation in usage across 
words. The output of LSA is a vector for each word, locating it in the derived 
subspace. The association between two words is typically assessed using the cosine of 
the angle between their vectors, a measure that appears to produce psychologically 
accurate results on a variety of tasks [5] . For the tests presented in this paper, 
we ran LSA on a subset of the TASA corpus, which contains excerpts from texts 
encountered by children between first grade and the first year of college. Our subset 
used all D = 37651 documents, and the W = 26414 words that occurred at least 
ten times in the whole corpus, with stop words removed. From this we extracted a 
500 dimensional representation, which we will use throughout the paper. 1 

3 The topic model 

Latent Semantic Analysis gives results that seem consistent with human judgments 
and extracts information relevant to predicting words from their contexts, although 
it was not explicitly designed with prediction in mind. This relationship suggests 
that a closer correspondence to human data might be obtained by directly attempt­
ing to solve the prediction task. In this section, we outline an alternative approach 
that involves learning a probabilistic model of the way language is generated. One 
generative model that has been used to outperform LSA on information retrieval 
tasks views documents as being composed of sets of topics [2 ,4]. If we assume that 
the words that occur in different documents are drawn from T topics, where each 
topic is a probability distribution over words, then we can model the distribution 
over words in anyone document as a mixture of those topics 

T 

P(Wi) = LP(Wilzi =j)P(Zi =j) 
j=l 

(2) 

where Zi is a latent variable indicating the topic from which the ith word was drawn 
and P(wilzi = j) is the probability of the ith word under the jth topic. The words 
likely to be used in a new context can be determined by estimating the distribution 
over topics for that context, corresponding to P(Zi). 

Intuitively, P(wlz = j) indicates which words are important to a topic, while P(z) 
is the prevalence of those topics within a document. For example, imagine a world 
where the only topics of conversation are love and research. We could then express 

IThe dimensionality of the representation is an important parameter for both models in 
this paper. LSA performed best on the word association task with around 500 dimensions, 
so we used the same dimensionality for the topic model. 



the probability distribution over words with two topics, one relating to love and the 
other to research. The content of the topics would be reflected in P(wlz = j): the 
love topic would give high probability to words like JOY, PLEASURE, or HEART, while 
the research topic would give high probability to words like SCIENCE, MATHEMATICS, 

or EXPERIMENT. Whether a particular conversation concerns love, research, or 
the love of research would depend upon its distribution over topics, P(z), which 
determines how these topics are mixed together in forming documents. 

Having defined a generative model, learning topics becomes a statistical problem. 
The data consist of words w = {Wl' ... , wn }, where each Wi belongs to some doc­
ument di , as in a word-document co-occurrence matrix. For each document we 
have a multinomial distribution over the T topics, with parameters ()(d), so for a 
word in document d, P(Zi = j) = ();d;). The jth topic is represented by a multi­

nomial distribution over the W words in the vocabulary, with parameters 1/i), so 
P(wilzi = j) = 1>W. To make predictions about new documents, we need to assume 
a prior distribution on the parameters (). Existing parameter estimation algorithms 
make different assumptions about (), with varying results [2,4]. Here, we present a 
novel approach to inference in this model, using Markov chain Monte Carlo with a 
symmetric Dirichlet(a) prior on ()(di) for all documents and a symmetric Dirichlet(,B) 
prior on 1>(j) for all topics. In this approach we do not need to explicitly represent 
the model parameters: we can integrate out () and 1>, defining the model simply in 
terms of the assignments of words to topics indicated by the Zi' 

Markov chain Monte Carlo is a procedure for obtaining samples from complicated 
probability distributions, allowing a Markov chain to converge to the taq~et dis­
tribution and then drawing samples from the states of that chain (see [3]). We 
use Gibbs sampling, where each state is an assignment of values to the variables 
being sampled, and the next state is reached by sequentially sampling all variables 
from their distribution when conditioned on the current values of all other variables 
and the data. We will sample only the assignments of words to topics, Zi. The 
conditional posterior distribution for Zi is given by 

n eW;) + (3 n(di) + a 
P( '1 ) -' ,} -',} 

Zi=)Z-i ,wex (.) (d ' ) 
n_i,j + W (3 n_i,. + Ta 

(3) 

where Z - i is the assignment of all Zk such that k f:. i, and n~~:j is the number 

of words assigned to topic j that are the same as w, n~L is the total number of 

words assigned to topic j, n~J,j is the number of words from document d assigned 

to topic j, and n~J. is the total number of words in document d, all not counting 
the assignment of the current word Wi. a,,B are free parameters that determine how 
heavily these distributions are smoothed. 

We applied this algorithm to our subset of the TASA corpus, which contains n = 
5628867 word tokens. Setting a = 0.1,,B = 0.01 we obtained 100 samples of 500 
topics, with 10 samples from each of 10 runs with a burn-in of 1000 iterations and 
a lag of 100 iterations between samples.2 Each sample consists of an assignment of 
every word token to a topic, giving a value to each Zi. A subset of the 500 topics 
found in a single sample are shown in Table 1. For each sample we can compute 

2Random numbers were generated with the Mersenne Twister, which has an extremely 
deep period [6]. For each run, the initial state of the Markov chain was found using an 
on-line version of Equation 3. 



FEEL 
FEELINGS 
FEELING 
ANGRY 

WAY 
THINK 
SHOW 
FEELS 

PEOPLE 
FRIENDS 
THINGS 
MIGHT 
HELP 

HAPPY 
FELT 
LOVE 

ANGER 
BEING 
WAYS 
FEAR 

MUSIC 
PLAY 
DANCE 
PLAYS 
STAGE 

PLAYED 
BAND 

AUDIENCE 
MUSICAL 
DANCING 
RHYTHM 
PLAYING 
THEATER 

DRUM 
ACTORS 
SHOW 

BALLET 
ACTOR 
DRAMA 
SONG 

BALL 
GAME 
TEAM 
PLAY 

BASEBALL 
FOOTBALL 
PLAYERS 

GAMES 
PLAYING 
FIELD 

PLAYED 
PLAYER 
COACH 

BASKETBALL 
SPORTS 

HIT 
BAT 

TENNIS 
TEAMS 

SOCCER 

SCIENCE 
STUDY 

SCIENTISTS 
SCIENTIFIC 

KNOWLEDGE 
WORK 

CHEMISTRY 
RESEARCH 
BIOLOGY 

MATHEMATICS 
LABORATORY 

STUDYING 
SCIENTIST 

PHYSICS 
FIELD 

STUDIES 
UNDERSTAND 

STUDIED 
SCIENCES 

MANY 

WORKERS 
WORK 
LABOR 

JOBS 
WORKING 
WORKER 

WAGES 
FACTORY 

JOB 
WAGE 

SKILLED 
PAID 

CONDITIONS 
PAY 

FORCE 
MANY 
HOURS 

EMPLOYMENT 
EMPLOYED 

EMPLOYERS 

FORCE 
FORCES 
MOT IO N 

BODY 
GRAVITY 

MASS 
PULL 

NEWTON 
OBJECT 

LAW 
DIRECTION 

MOVING 
REST 
FALL 

ACTING 
MOMENTUM 

DISTANCE 
GRAVITATIONAL 

PUSH 
VELOCITY 

Table 1: Each column shows the 20 most probable words in one of the 500 topics 
obtained from a single sample. The organization of the columns and use of boldface 
displays the way in which polysemy is captured by the model. 

the posterior predictive distribution (and posterior mean for q/j)) : 

J ( .) ( 0) ( 0) n (W) + (3 
P(wl z = j, z, w) = P(wl z = j, ¢ J )P(¢ J Iz, w) d¢ J = _(;=,.J) __ 

nj + W (3 
(4) 

4 Predicting word association 

We used both LSA and the topic model to predict the association between pairs 
of words, comparing these results with human word association norms collected by 
Nelson, McEvoy and Schreiber [7]. These word association norms were established 
by presenting a large number of participants with a cue word and asking them to 
name an associated word in response. A total of 4544 of the words in these norms 
appear in the set of 26414 taken from the TASA corpus. 

4.1 Latent Semantic Analysis 

In LSA, the association between two words is usually measured using the cosine 
of the angle between their vectors. We ordered the associates of each word in the 
norms by their frequencies , making the first associate the word most commonly 
given as a response to the cue. For example, the first associate of NEURON is BRAIN. 

We evaluated the cosine between each word and the other 4543 words in the norms, 
and then computed the rank of the cosine of each of the first ten associates, or 
all of the associates for words with less than ten. The results are shown in Figure 
1. Small ranks indicate better performance, with a rank of one meaning that the 
target word had the highest cosine. The median rank of the first associate was 32, 
and LSA correctly predicted the first associate for 507 of the 4544 words. 

4.2 The topic model 

The probabilistic nature of the topic model makes it easy to predict the words likely 
to occur in a particular context. If we have seen word WI in a document, then we 
can determine the probability that word W2 occurs in that document by computing 
P( w2IwI). The generative model allows documents to contain multiple topics, which 
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Figure 1: Performance of different methods of prediction on the word association 
task. Error bars show one standard error, estimated with 1000 bootstrap samples. 

is extremely important to capturing the complexity of large collections of words 
and computing the probability of complete documents. However, when comparing 
individual words it is more effective to assume that they both come from a single 
topic. This assumption gives us 

(5) 
z 

where we use Equation 4 for P(wlz) and P(z) is uniform, consistent with the sym­
metric prior on e, and the subscript in Pi (w2lwd indicates the restriction to a single 
topic. This estimate can be computed for each sample separately, and an overall 
estimate obtained by averaging over samples. We computed Pi (w2Iwi) for the 4544 
words in the norms, and then assessed the rank of the associates in the resulting 
distribution using the same procedure as for LSA. The results are shown in Figure 
1. The median rank for the first associate was 32, with 585 of the 4544 first asso­
ciates exactly correct. The probabilistic model performed better than LSA, with 
the improved performance becoming more apparent for the later associates . 

4.3 Discussion 

The central problem in modeling semantic association is capturing the interaction 
between word frequency and similarity of word usage. Word frequency is an impor­
tant factor in a variety of cognitive tasks, and one reason for its importance is its 
predictive utility. A higher observed frequency means that a word should be pre­
dicted to occur more often. However , this effect of frequency should be tempered by 
the relationship between a word and its semantic context . The success of the topic 
model is a consequence of naturally combining frequency information with semantic 
similarity: when a word is very diagnostic of a small number of topics, semantic 
context is used in prediction. Otherwise, word frequency plays a larger role. 



The effect of word frequency in the topic model can be seen in the rank-order 
correlation of the predicted ranks of the first associates with the ranks predicted 
by word frequency alone, which is p = 0.49. In contrast , the cosine is used in LSA 
because it explicitly removes the effect of word frequency, with the corresponding 
correlation being p = -0.01. The cosine is purely a measure of semantic similarity, 
which is useful in situations where word frequency is misleading, such as in tests of 
English fluency or other linguistic tasks, but not necessarily consistent with human 
performance. This measure was based in the origins of LSA in information retrieval , 
but other measures that do incorporate word frequency have been used for modeling 
psychological data. We consider one such measure in the next section. 

5 Relating LSA and the topic model 

The decomposition of a word-document co-occurrence matrix provided by the topic 
model can be written in a matrix form similar to that of LSA. Given a word­
document co-occurrence matrix F, we can convert the columns into empirical es­
timates of the distribution over words in each document by dividing each column 
by its sum. Calling this matrix P, the topic model approximates it with the non­
negative matrix factorization P ~ ¢O, where column j of ¢ gives 4/j) , and column d 
of 0 gives ()(d). The inner product matrix ppT is proportional to the empirical esti­
mate of the joint distribution over words P(WI' W2)' We can write ppT ~ ¢OOT ¢T, 

corresponding to P(WI ,W2) = L z"Z 2 P(wIl zdP(W2Iz2)P(ZI,Z2) , with OOT an em­
pirical estimate of P(ZI , Z2)' The theoretical distribution for P(ZI,Z2) is propor­
tional to 1+ 0::, where I is the identity matrix, so OOT should be close to diagonal. 
The single topic assumption removes the off-diagonal elements, replacing OOT with 
I to give PI (Wl ' W2) ex: ¢¢T. 

By comparison, LSA transforms F to a matrix G via Equation 1, then the SVD 
gives G ~ UDVT for some low-rank diagonal D. The locations of the words along 
the extracted dimensions are X = UD. If the column sums do not vary extensively, 
the empirical estimate of the joint distribution over words specified by the entries in 
G will be approximately P(WI,W2) ex: GGT. The properties of the SVD guarantee 
that XXT , the matrix of inner products among the word vectors , is the best low­
rank approximation to GGT in terms of squared error. The transformations in 
Equation 1 are intended to reduce the effects of word frequency in the resulting 
representation, making XXT more similar to ¢¢T. 

We used the inner product between word vectors to predict the word association 
norms, exactly as for the cosine. The results are shown in Figure 1. The inner 
product initially shows worse performance than the cosine, with a median rank 
of 34 for the first associate and 500 exactly correct, but performs better for later 
associates. The rank-order correlation with the predictions of word frequency for 
the first associate was p = 0.46, similar to that for the topic model. The rank­
order correlation between the ranks given by the inner product and the topic model 
was p = 0.81, while the cosine and the topic model correlate at p = 0.69. The 
inner product and PI (w2lwd in the topic model seem to give quite similar results, 
despite being obtained by very different procedures. This similarity is emphasized 
by choosing to assess the models with separate ranks for each cue word, since this 
measure does not discriminate between joint and conditional probabilities. While 
the inner product is related to the joint probability of WI and W2, PI (w2lwd is a 
conditional probability and thus allows reasonable comparisons of the probability 
of W2 across choices of WI , as well as having properties like asymmetry that are 
exhibited by word association. 



HE 
YOU 

THEY 
I 

SHE 
WE 
IT 

PEOPLE 
EVERYONE 

OTHERS 
SCIENTISTS 
SOMEONE 

WHO 
NOBODY 

ONE 
SOMETHING 

ANYONE 
EVERYBODY 

SOME 
THEN 

"syntax" 
ON BE 

MAKE 
GET 

HAVE 
GO 

TAKE 

AT 
INTO 
FROM 
WITH 

THROUGH 
OVER 

AROUND 
AGAINST 
ACROSS 

UPON 
TOWARD 

UNDER 
ALONG 
NEAR 

BEHIND 
OFF 

ABOVE 
DOWN 

BEFORE 

DO 
FIND 
USE 
SEE 

HELP 
KEEP 
GIVE 
LOOK 
COME 
WORK 
MOVE 
LIVE 
EAT 

BECOME 

SAID 
ASKED 

THOUGHT 
TOLD 
SAYS 

MEANS 
CALLED 
CRIED 
SHOWS 

ANSWERED 
TELLS 

REPLIED 
SHOUTED 

EXPLAINED 
LAUGHED 

MEANT 
WROTE 

SHOWED 
BELIEVED 

WHISPERED 

"semantics" 
MAP 

NORTH 
EARTH 
SOUTH 
POLE 
MAPS 

EQUATOR 
WEST 
LINES 
EAST 

AUSTRALIA 
GLOBE 
POLES 

HEMISPHERE 
LATITUDE 

PLACES 
LAND 

WORLD 
COMPASS 

CONTINENTS 

DOCTOR 
PATIENT 
HEALTH 

HOSPITAL 
MEDICAL 

CARE 
PATIENTS 

NURSE 
DOCTORS 
MEDICINE 
NURSING 

TREATMENT 
NURSES 

PHYSICIAN 
HOSPITALS 

DR 
S ICK 

ASSISTANT 
EMERGENCY 

PRACTICE 

Table 2: Each column shows the 20 most probable words in one of the 48 "syntactic" 
states of the hidden Markov model (four columns on the left) or one of the 150 
"semantic" topics (two columns on the right) obtained from a single sample. 

6 Exploring more complex generative models 

The topic model, which explicitly addresses the problem of predicting words from 
their contexts, seems to show a closer correspondence to human word association 
than LSA. A major consequence of this analysis is the possibility that we may be 
able to gain insight into some of the associative aspects of human semantic memory 
by exploring statistical solutions to this prediction problem. In particular, it may 
be possible to develop more sophisticated generative models of language that can 
capture some of the important linguistic distinctions that influence our processing 
of words. The close relationship between LSA and the topic model makes the latter 
a good starting point for an exploration of semantic association, but perhaps the 
greatest potential of the statistical approach is that it illustrates how we might go 
about relaxing some of the strong assumptions made by both of these models. 

One such assumption is the treatment of a document as a "bag of words" , in which 
sequential information is irrelevant. Semantic information is likely to influence only 
a small subset of the words used in a particular context, with the majority of the 
words playing functional syntactic roles that are consistet across contexts. Syntax is 
just as important as semantics for predicting words, and may be an effective means 
of deciding if a word is context-dependent. In a preliminary exploration of the 
consequences of combining syntax and semantics in a generative model for language, 
we applied a simple model combining the syntactic structure of a hidden Markov 
model (HMM) with the semantic structure of the topic model. Specifically, we used 
a third-order HMM with 50 states in which one state marked the start or end of 
a sentence, 48 states each emitted words from a different multinomial distribution, 
and one state emitted words from a document-dependent multinomial distribution 
corresponding to the topic model with T = 150. We estimated parameters for this 
model using Gibbs sampling, integrating out the parameters for both the HMM and 
the topic model and sampling a state and a topic for each of the 11821091 word 
tokens in the corpus.3 Some of the state and topic distributions from a single sample 
after 1000 iterations are shown in Table 2. The states of the HMM accurately picked 
out many of the functional classes of English syntax, while the state corresponding 
to the topic model was used to capture the context-specific distributions over nouns. 

3This larger number is a result of including low frequency and stop words. 



Combining the topic model with the HMM seems to have advantages for both: no 
function words are absorbed into the topics, and the HMM does not need to deal 
with the context-specific variation in nouns. The model also seems to do a good job 
of generating topic-specific text - we can clamp the distribution over topics to pick 
out those of interest, and then use the model to generate phrases. For example, we 
can generate phrases on the topics of research ("the chief wicked selection of research 
in the big months" , "astronomy peered upon your scientist's door", or "anatomy 
established with principles expected in biology") , language ("he expressly wanted 
that better vowel"), and the law ("but the crime had been severely polite and 
confused" , or "custody on enforcement rights is plentiful"). While these phrases 
are somewhat nonsensical , they are certainly topical. 

7 Conclusion 

Viewing memory and categorization as systems involved in the efficient prediction 
of an organism's environment can provide insight into these cognitive capacities. 
Likewise, it is possible to learn about human semantic association by considering 
the problem of predicting words from their contexts. Latent Semantic Analysis 
addresses this problem, and provides a good account of human semantic association. 
Here, we have shown that a closer correspondence to human data can be obtained 
by taking a probabilistic approach that explicitly models the generative structure 
of language, consistent with the hypothesis that the association between words 
reflects their probabilistic relationships. The great promise of this approach is the 
potential to explore how more sophisticated statistical models of language, such as 
those incorporating both syntax and semantics, might help us understand cognition. 
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