
Hyperkernels

Cheng Soon Ong, Alexander J. Smola, Robert C. Williamson
Research School of Information Sciences and Engineering

The Australian National University
Canberra, 0200 ACT, Australia�

Cheng.Ong, Alex.Smola, Bob.Williamson � @anu.edu.au

Abstract

We consider the problem of choosing a kernel suitable for estimation
using a Gaussian Process estimator or a Support Vector Machine. A
novel solution is presented which involves defining a Reproducing Ker-
nel Hilbert Space on the space of kernels itself. By utilizing an analog
of the classical representer theorem, the problem of choosing a kernel
from a parameterized family of kernels (e.g. of varying width) is reduced
to a statistical estimation problem akin to the problem of minimizing a
regularized risk functional. Various classical settings for model or kernel
selection are special cases of our framework.

1 Introduction

Choosing suitable kernel functions for estimation using Gaussian Processes and Support
Vector Machines is an important step in the inference process. To date, there are few if
any systematic techniques to assist in this choice. Even the restricted problem of choosing
the “width” of a parameterized family of kernels (e.g. Gaussian) has not had a simple and
elegant solution.
A recent development [1] which solves the above problem in a restricted sense involves
the use of semidefinite programming to learn an arbitrary positive semidefinite matrix � ,
subject to minimization of criteria such as the kernel target alignment [1], the maximum of
the posterior probability [2], the minimization of a learning-theoretical bound [3], or subject
to cross-validation settings [4]. The restriction mentioned is that the methods work with the
kernel matrix, rather than the kernel itself. Furthermore, whilst demonstrably improving the
performance of estimators to some degree, they require clever parameterization and design
to make the method work in the particular situations. There are still no general principles to
guide the choice of a) which family of kernels to choose, b) efficient parameterizations over
this space, and c) suitable penalty terms to combat overfitting. (The last point is particularly
an issue when we have a very large set of semidefinite matrices at our disposal).
Whilst not yet providing a complete solution to these problems, this paper presents a frame-
work that allows the optimization within a parameterized family relatively simply, and cru-
cially, intrinsically captures the tradeoff between the size of the family of kernels and the
sample size available. Furthermore, the solution presented is for optimizing kernels them-
selves, rather than the kernel matrix as in [1]. Other approaches on learning the kernel
include using boosting [5] and by bounding the Rademacher complexity [6].

Outline of the Paper We show (Section 2) that for most kernel-based learning methods
there exists a functional, the quality functional1, which plays a similar role to the empiri-
cal risk functional, and that subsequently (Section 3) the introduction of a kernel on ker-
nels, a so-called hyperkernel, in conjunction with regularization on the Reproducing Ker-
nel Hilbert Space formed on kernels leads to a systematic way of parameterizing function
classes whilst managing overfitting. We give several examples of hyperkernels (Section 4)
and show (Section 5) how they can be used practically. Due to space constraints we only
consider Support Vector classification.

2 Quality Functionals

Let ��������� 	�

� ������������������� � denote the set of training data and ��������� 	�
�� ������������������� � the
set of corresponding labels, jointly drawn iid from some probability distribution �! �"�#�%$
on &('*) . Furthermore, let � ��+-,�� and � ��+-,.� denote the corresponding test sets (drawn from
the same �! �/���0$). Let �1

�2� ������� 	43 � ��+-,.� and �5

�6� �7����� 	83 � �7+-,.� .
We introduce a new class of functionals 9 on data which we call quality functionals. Their
purpose is to indicate, given a kernel : and the training data ��;������� 	 � �%�7����� 	 $, how suitable
the kernel is for explaining the training data.

Definition 1 (Empirical Quality Functional) Given a kernel : , and data � � � , define9<+-=?>%@ : � � � �<A to be an empirical quality functional if it depends on : only via :B �BC��#�0D�$
where

� C �#� D;E � ; i.e. if there exists a function F such that 9 +-=?> @ : � � � �<AG�HF0 � � � � � $
where �I�J@ :B � C �#� D $ A C�K D is the kernel matrix.

The basic idea is that 9L+-=?> could be used to adapt : in a manner such that 9M+-=?> is
minimized, based on this single dataset � � � . Given a sufficiently rich class N of ker-
nels : it is in general possible to find a kernel :PO E N that attains arbitrarily small
values of 9 +-=?> @ :QO � � ������� 	 � � ������� 	 A for any training set. However, it is very unlikely that9<+-=?>%@ :QO � ����+-,.� � �Q��+-,.�-A would be similarly small in general. Analogously to the standard
methods of statistical learning theory, we aim to minimize the expected quality functional:

Definition 2 (Expected Quality Functional) Suppose 9 +-=?> is an empirical quality func-
tional. Then 9!@ :RA/
��2SUT K V @ 9L+-=?>R@ : � � � �<AWA (1)

is the expected quality functional, where the expectation is taken with respect to � � .

Note the similarity between 9 +-=?> @ : � � � �<A and the empirical risk of an estimatorX +-=?>%@ Y � � � �<AL�
��[Z �CW\"��] ��C��#��C�� YG ��C^$#$ (where

]
is a suitable loss function): in both

cases we compute the value of a functional which depends on some sample � � � drawn
from �! �/�#�%$ and a function, and in both cases we have

9!@ :RAP�2S_T K V @ 9<+-=?>%@ : � � � �<A`A and
X @ Y�AP�6S_T K V @ X +-=?>%@ Y � � � �<A`A � (2)

Here
X @ Y�A is known as the expected risk. We now present some examples of quality func-

tionals, and derive their exact minimizers whenever possible.

Example 1 (Kernel Target Alignment) This quality functional was introduced in [7] to
assess the “alignment” of a kernel with training labels. It is defined by

9 ��a � b�	�=?+-	c�+-=?> @ : � � ������� 	 � � ������� 	 A/
��Jdfe
�%g � �

hi�jh�kk h � h k � (3)

where
�

denotes the vector of elements of � ������� 	 , h��jh k denotes the l k norm of
�

, and
h � h k

is the Frobenius norm:
h � h kk
��nm�o � � g � Z C�K D � kC�D

. Note that the definition in [7] looks
somewhat different, yet it is algebraically identical to (3).

1We actually mean badness, since we are minimizing this functional.

By decomposing � into its eigensystem, one can see that (3) is minimized if � � ��� g
, in

which case9 ��a � b�	�=?+-	c�+-=?> @ : O � ���7����� 	 � �%������� 	�A��Hdfe
� g �R� g �

h��jh�kk h���� g h k �Hd4e
hi�jh � khi�jh�kk h��jh�kk � � � (4)

It is clear that one cannot expect that 9 ��a � b�	�=?+-	c�+-=?> @ :QO � � ������� 	 � � ������� 	 A�� � for data other than
the set chosen to determine :PO .
Example 2 (Regularized Risk Functional) If � is the Reproducing Kernel Hilbert Space
(RKHS) associated with the kernel : , the regularized risk functionals have the form

X ��+-b @ Y � � ������� 	 � � ������� 	 A/

� d� �� CW\"�] � C ��� C � YG � C $#$��	�
fh Y h k� � (5)

where
h Y h k� is the RKHS norm of Y . By virtue of the representer theorem (see e.g., [4, 8])

we know that the minimizer over Y E � of (5) can be written as a kernel expansion.
For a given loss

]
this leads to the quality functional

9 ��+-b���� ,
�+-=?> @ : � � ������� 	 � � �7����� 	 A
��������������� � d� �� C`\"�] � C �#� C � @ ���/A C $����
 � g � ��! � (6)

The minimizer of (6) is more difficult to find, since we have to carry out a double mini-
mization over � and � . First, note that for � �#" �R� g and � �

�$&%(')%(* � , � �6� �
and� g ��� �+"-, � . Thus 9 ��+-b���� ,.�+-=?> @ : � � ������� 	 � � ������� 	 A<� /k $. For sufficiently large " , we can

make 9 ��+-b���� ,
�+-=?> @ : � � ������� 	 � � ������� 	 A arbitrarily close to
�
.

Even if we disallow setting � to zero, by setting m�o � � d , we can determine the minimum
of (6) as follows. Set � � �%10�% *3242 g , where 2 E65 � , and � � 2 . Then ��� � 2 and so

d� �� CW\"�] � C ��� C � @ � �jA C $��	�
 � g ��� � �� CW\"�] � C ��� C � 2 C $7���
8h 2 h kk �
Choosing each 2 C �98�o;:4���<��=] ��C�����C �?>�$7� / k > k yields the minimum with respect to 2 . The
proof that � is the global minimizer of this quality functional is omitted for brevity.

Example 3 (Negative Log-Posterior) In Gaussian processes, this functional is similar toX ��+-b�@ Y � ��������� 	 � �Q������� 	�A since it includes a regularization term (the negative log prior) and a
loss term (the negative log-likelihood). In addition, it also includes the log-determinant of

� which measures the size of the space spanned by � . The quality functional is

9 a @�b�>�@�,.�+-=?> @ : � ��������� 	 � �Q������� 	�A/

�A�B���C ��� � � e �� C`\ �7D�E :�F" � C;G ��C�� Y C $�� d
 Y g � , � Y � d
 D�E : G � G !
(7)

Note that any � which does not have full rank will send (7) to eIH , and thus such cases
need to be excluded. When we fix

G � G �Jd , to exclude the above case, we can set

� �J" h��Bh , k �R� g � " ,LK�NM K POMe hi�jh , k �R� g $ (8)
which leads to

G � G � d . Under the assumption that the minimum of e D<E :�F" � C ��� C � Y C $
with respect to Y C is attained at Y C � � C

, we can see that "RQSH still leads to the overall
minimum of 9 a @�b�>�@�,.�+-=?> @ : � ��������� 	 � �Q������� 	 A .
Other examples, such as cross-validation, leave-one-out estimators, the Luckiness frame-
work, the Radius-Margin bound also have empirical quality functionals which can be arbi-
trarily minimized.
The above examples illustrate how many existing methods for assessing the quality of a
kernel fit within the quality functional framework. We also saw that given a rich enough
class of kernels N , optimization of 9 +-=?> over N would result in a kernel that would be
useless for prediction purposes. This is yet another example of the danger of optimizing
too much — there is (still) no free lunch.

3 A Hyper Reproducing Kernel Hilbert Space
We now introduce a method for optimizing quality functionals in an effective way. The
method we propose involves the introduction of a Reproducing Kernel Hilbert Space on
the kernel : itself — a “Hyper”-RKHS. We begin with the basic properties of an RKHS
(see Def 2.9 and Thm 4.2 in [8] and citations for more details).

Definition 3 (Reproducing Kernel Hilbert Space) Let & be a nonempty set (often called
the index set) and denote by � a Hilbert space of functions Y
 & Q 5

. Then � is
called a reproducing kernel Hilbert space endowed with the dot product

���`��� �
(and the

norm
h Y h

��� � Y � Y �) if there exists a function :
 & ' &#Q 5 satisfying,

�/���	� E & :
1. : has the reproducing property

� Y � :B �"�
��$�� � YG �P$ for all Y E � ; in particular,� :B �/��� $�� :B ���^�
��$�� � :B �/�#���.$.
2. : spans � , i.e. � �
�� 8)� � :B �/�
��$ G � E & � where � is the completion of � .

The advantage of optimization in an RKHS is that under certain conditions the optimal
solutions can be found as the linear combination of a finite number of basis functions,
regardless of the dimensionality of the space � , as can be seen in the theorem below.

Theorem 4 (Representer Theorem) Denote by �
�@ � � H $ Q 5
a strictly monotonic

increasing function, by & a set, and by
]
4 & ' 5 k $ � Q 5 3 � H � an arbitrary loss

function. Then each minimizer Y E � of the regularized risk] � �B� �#�R� � YG ����$#$���������� �����#����� YG ���<$#$�$�� � h Y h � $ (9)

admits a representation of the form YG ��$ � Z �C`\"� � C :B ��C��#�P$.
The above definition allows us to define an RKHS on kernels & ' & Q 5

, simply by
introducing &

�6& ' & and by treating : as functions :
 & Q 5 :

Definition 5 (Hyper Reproducing Kernel Hilbert Space) Let & be a nonempty set and
let &
�� & ' & (the compounded index set). Then the Hilbert space � of functions:
 & Q 5 , endowed with a dot product

���W�
���
(and the norm

h : h ��� � : � : �) is called
a Hyper Reproducing Kernel Hilbert Space if there exists a hyperkernel :
�& ' & Q 5
with the following properties:

1. : has the reproducing property
� : � : � �
��$�� � :B � $ for all : E � , in particular,� : � ��� $�� : � � �
��$�� � : � ��� � $.

2. : spans � , i.e. � �
�� 8)� � : � �
��$ G � E & � .
3. For any fixed

� E & the hyperkernel : is a kernel in its second argument, i.e. for
any fixed

� E & , the function :B �/�#� � $
�� : � � �/��� � $#$ with
�"�#� � E & is a kernel.

What distinguishes � from a normal RKHS is the particular form of its index set (& � & k)
and the additional condition on : to be a kernel in its second argument for any fixed first
argument. This condition somewhat limits the choice of possible kernels. On the other
hand, it allows for simple optimization algorithms which consider kernels : E � , which
are in the convex cone of : . Analogously to the definition of the regularized risk functional
(5), we define the regularized quality functional:

9 ��+-b @ : � � � �<A/

�69 +-=?> @ : � � � �LA � ���
 h : h k � (10)

where ����� � is a regularization constant and
h : h k denotes the RKHS norm in � . Mini-

mization of 9<��+-b is less prone to overfitting than minimizing 9M+-=?> , since the regularization
term /��k h : h k effectively controls the complexity of the class of kernels under consideration.
Regularizers other than / �k h : h k are also possible. The question arising immediately from
(10) is how to minimize the regularized quality functional efficiently. In the following we
show that the minimum can be found as a linear combination of hyperkernels.

Corollary 6 (Representer Theorem for Hyper-RKHS) Let � be a hyper-RKHS and de-
note by �
 @ � � H $ Q 5 a strictly monotonic increasing function, by & a set, and by 9
an arbitrary quality functional. Then each minimizer : E � of the regularized quality
functional 9!@ : � � � �<A �����
 h : h k (11)

admits a representation of the form :B �/�#� � $ �
��C�K D�\"� " C�D : # �PC��#�0D $�� �/�#� � $#$.

Proof All we need to do is rewrite (11) so that it satisfies the conditions of Theorem 4. Let� C
D
�� �PC��#�0D $. Then 9;@ : � � � �_A has the properties of a loss function, as it only depends
on : via its values at

� C
D
. Furthermore, / �k h : h k is an RKHS regularizer, so the representer

theorem applies and the expansion of : follows.

This result shows that even though we are optimizing over an entire (potentially infinite
dimensional) Hilbert space of kernels, we are able to find the optimal solution by choosing
among a finite dimensional subspace. The dimension required (� k) is, not surprisingly, sig-
nificantly larger than the number of kernels required in a kernel function expansion which
makes a direct approach possible only for small problems. However, sparse expansion
techniques, such as [9, 8], can be used to make the problem tractable in practice.

4 Examples of Hyperkernels

Having introduced the theoretical basis of the Hyper-RKHS, we need to answer the ques-
tion whether practically useful : exist which satisfy the conditions of Definition 5. We
address this question by giving a set of general recipes for building such kernels.

Example 4 (Power Series Construction) Denote by : a positive semidefinite kernel, and
by �
 5 Q 5 a function with positive Taylor expansion coefficients �B �� $ � Z��C`\��/] C � C and
convergence radius

X
. Then for : k �/������$�� X

we have that

: � �#� � $

�	�B 7:j � $:B � � $#$ �
�� CW\
�] C :B � $:B � � $#$ C (12)

is a hyperkernel: for any fixed
�

, : � � �"�#� � $#$ is a sum of kernel functions, hence it is
a kernel itself (since : C �/�����.$ is a kernel if : is). To show that : is a kernel, note that: � ��� � $ � ��� � $i�
� � � $�� , where

� � $

�J ��] � � �] � : � � $i� �] k : k � $i��������$.
Example 5 (Harmonic Hyperkernel) A special case of (12) is the harmonic hyperkernel:
Denote by : a kernel with :
 &(';&#Q @ � � d�A (e.g., RBF kernels satisfy this property), and
set

] C

�H d e ��� $ � C � for some
��� ��� � d . Then we have

: � �#� � $ � dfe � � $ �� C`\�� � � :B � $:B � � $�$ C � dfe � �
dfe ��� :B � $:j � � $ � (13)

Example 6 (Gaussian Harmonic Hyperkernel) For :B �"�#� � $ ����� �/ #e�� k h�� e ���-h k $,
: # �/�#� � $i� � � � �#� � � � $�$ � dfe ���

dfe � � ��� �L �e�� k h�� e � � h k � hi� � � e � � � � h k $#$
�

(14)

For � � Q d , : converges to ��� K � � ; that is, the expression
h : h k converges to the Frobenius

norm of : on �1' � .

�B �� $ Power series expansion
X

� � � � d � �� � � �2������� �
� � � � �2����� H

;�<� � � �� � � ���� � �6����� � �	� *�

� K �� k ��� ��� � �2����� H
� E
 � � d � � *k � �2������� �	� *�
 �� k � � � �[����� H8�o � m 8)� � � � � � ���� �[����� � � *�
�� Kk ��� � �6�����

1

e D �/ dfe � $ � � � � *k �[����� � �
� �2�����
1

Table 1: Examples of Hyperkernels

We can find further hyperkernels,
simply by consulting tables on
power series of functions. Ta-
ble 1 contains a list of suitable
expansions. Recall that expan-
sions such as (12) were mainly
chosen for computational conve-
nience, in particular whenever it
is not clear which particular class
of kernels would be useful for the
expansion.

Example 7 (Explicit Construction) If we know or have a reasonable guess as to which
kernels could be potentially relevant (e.g., a range of scales of kernel width, polynomial
degrees, etc.), we may begin with a set of candidate kernels, say : � , . . . , : � and define

: � �#� � $

�
�� C`\"�] C : C � $: C � � $�� : C � $�� � ����� � (15)

Clearly : is a hyperkernel, since : � ��� �W$ � � � � $��
� � �.$�� , where
� � $

� �] � : � � $i� �] k : k � $���������� �] � : � � $�$.

5 An Application: Minimization of the Regularized Risk

Recall that in the case of the Regularized Risk functional, the regularized quality optimiza-
tion problem takes on the form

����� ���B��� �C � � K � � � d� �� CW\"�] �PC�����C � YG �PC $�$�� �
 h Y h k� � � �
 h : h k� � (16)

For Y � Z C � C :B � C �#��$, the second term
h Y h k� is a linear function of : . Given a convex

loss function
]
, the regularized quality functional (16) is convex in : . The corresponding

regularized quality functional is:

9 ��+-b���� ,
���+-b @ : � � � �<A�� 9 ��+-b���� ,
�+-=?> @ : � � � �<A �	���
 h : h k� (17)

For fixed : , the problem can be formulated as a constrained minimization problem in Y , and
subsequently expressed in terms of the Lagrange multipliers � . However, this minimum
depends on : , and for efficient minimization we would like to compute the derivatives with
respect to : . The following lemma tells us how (it is an extension of a result in [3] and we
omit the proof for brevity):

Lemma 7 Let
� E 5 �

and denote by YG �/��� $i�] C
 5 � Q 5 convex functions, where Y is
parameterized by

�
. Let

X � $ be the minimum of the following optimization problem (and
denote by

� ��$ its minimizer):

minimize� ��� � YG �"��� $ subject to
] C ��$ � � for all d �! �#"?�

(18)

Then $
D
% X ��$ �'&

Dk YG � � $���� $, where (E*)
and & k denotes the derivative with respect to

the second argument of Y .

Since the minimizer of (17) can be written as a kernel expansion (by the representer theo-
rem for Hyper-RKHS), the optimal regularized quality functional can be written as (using

the soft margin loss and � C�D�� �

� : # ��C��#�0D�$i� ���%�#� � $�$:
9 ��+-b���� ,
���+-b @ � � � � " � � � �MA � d� �� CW\"� ��8 � � � � dfe � C ��D�K � K � \"� � D " � � � C
D�� ��� (19)� �
 ��C�K D�K ��K � \"� � C � D " � � � C�D�� � ��� �
 ��C�K D�K ��K � \"� " C
D " � � � C�D�� �

Minimization of (19) is achieved by alternating between minimization over � for fixed "
(this is a quadratic optimization problem), and subsequently minimization over " (with" C
D�� � to ensure positivity of the kernel matrix) for fixed � .

Low Rank Approximation While being finite in the number of parameters (despite the
optimization over two possibly infinite dimensional Hilbert spaces � and �), (19) still
presents a formidable optimization problem in practice (we have � k coefficients for ").
For an explicit expansion of type (15) we can optimize in the expansion coefficients of: C � $: C � � $ directly, which means that we simply have a quality functional with an l k
penalty on the expansion coefficients. Such an approach is recommended if there are few
terms in (15). In the general case (or if

"
	 �), we resort to a low-rank approximation, as
described in [9, 8]. This means that we pick from : � �BC��#�0D $��
��$ with d � c� (� � a small
fraction of terms which approximate : on � ' � sufficiently well.

6 Experimental Results and Summary

Experimental Setup To test our claims of kernel adaptation via regularized quality func-
tionals we performed preliminary tests on datasets from the UCI repository (Pima, Iono-
sphere, Wisconsin diagnostic breast cancer) and the USPS database of handwritten digits
(’6’ vs. ’9’). The datasets were split into � �
� training data and � ��� test data, except for
the USPS data, where the provided split was used. The experiments were repeated over
200 random 60/40 splits. We deliberately did not attempt to tune parameters and instead
made the following choices uniformly for all four sets:� The kernel width � was set to � , � �5d � ��� , where

�
is the dimensionality of the

data. We deliberately chose a too large value in comparison with the usual rules
of thumb [8] to avoid good default kernels.� � was adjusted so that

�/ � � d � � (that is � �Hd �4� in the Vapnik-style parameter-
ization of SVMs). This has commonly been reported to yield good results.� � � for the Gaussian Harmonic Hyperkernel was chosen to be

� � � throughout, giv-
ing adequate coverage over various kernel widths in (13) (small � � focus almost
exclusively on wide kernels, � � close to d will treat all widths equally).� The hyperkernel regularization was set to �	� � d � , � .

We compared the results with the performance of a generic Support Vector Machine with
the same values chosen for � and � and one for which � � � had been hand-tuned using cross
validation.

Results Despite the fact that we did not try to tune the parameters we were able to achieve
highly competitive results as shown in Table 2. It is also worth noticing that the number of
hyperkernels required after a low-rank decomposition of the hyperkernel matrix contained
typically less than 10 hyperkernels, thus rendering the optimization problem not much
more costly than a standard Support Vector Machine (even with a very high quality d � ,��
approximation of �) and that after the optimization of (19), typically less than � were being
used. This dramatically reduced the computational burden.
Using the same non-optimized parameters for different data sets we achieved results com-
parable to other recent work on classification such as boosting, optimized SVMs, and kernel
target alignment [10, 11, 7] (note that we use a much smaller part of the data for training:

X ��+-b 9 ��+-b Best in Tuned
Data(size) Train Test Train Test [10, 11] SVM
pima(768) 25.2 � 2.0 26.2 � 3.3 22.2 � 1.4 23.2 � 2.0 23.5 22.9 � 2.0

ionosph(351) 13.4 � 2.0 16.5 � 3.4 10.9 � 1.5 13.4 � 2.4 6.2 6.1 � 1.9
wdbc(569) 5.7 � 0.8 5.7 � 1.3 2.1 � 0.6 2.7 � 1.0 3.2 2.5 � 0.9
usps(1424) 2.1 3.4 1.5 2.8 NA 2.5

Table 2: Training and test error in percent

only � �
� rather than � ���). Results based on 9M��+-b are comparable to hand tuned SVMs
(right most column), except for the ionosphere data. We suspect that this is due to the small
training sample.

Summary and Outlook The regularized quality functional allows the systematic solu-
tion of problems associated with the choice of a kernel. Quality criteria that can be used
include target alignment, regularized risk and the log posterior. The regularization implicit
in our approach allows the control of overfitting that occurs if one optimizes over a too
large a choice of kernels.
A very promising aspect of the current work is that it opens the way to theoretical analyses
of the price one pays by optimizing over a larger set N of kernels. Current and future
research is devoted to working through this analysis and subsequently developing methods
for the design of good hyperkernels.

Acknowledgements This work was supported by a grant of the Australian Research
Council. The authors thank Grace Wahba for helpful comments and suggestions.

References

[1] G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan. Learning the
kernel matrix with semidefinite programming. In ICML. Morgan Kaufmann, 2002.

[2] C. K. I. Williams. Prediction with Gaussian processes: From linear regression to
linear prediction and beyond. In M. I. Jordan, editor, Learning and Inference in
Graphical Models. Kluwer Academic, 1998.

[3] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing kernel parameters
for support vector machines. Machine Learning, 2002. Forthcoming.

[4] G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990.

[5] K. Crammer, J. Keshet, and Y. Singer. Kernel design using boosting. In Advances in
Neural Information Processing Systems 15, 2002. In press.

[6] O. Bousquet and D. Herrmann. On the complexity of learning the kernel matrix. In
Advances in Neural Information Processing Systems 15, 2002. In press.

[7] N. Cristianini, A. Elisseeff, and J. Shawe-Taylor. On optimizing kernel alignment.
Technical Report NC2-TR-2001-087, NeuroCOLT, http://www.neurocolt.com, 2001.

[8] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

[9] S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representa-
tion. Technical report, IBM Watson Research Center, New York, 2000.

[10] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In ICML,
pages 148–146. Morgan Kaufmann Publishers, 1996.

[11] G. Rätsch, T. Onoda, and K. R. Müller. Soft margins for adaboost. Machine Learning,
42(3):287–320, 2001.

