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Abstract 

Segmentation and recognition have long been treated as two separate pro­
cesses. We propose a mechanism based on spectral graph partitioning 
that readily combine the two processes into one. A part-based recogni­
tion system detects object patches, supplies their partial segmentations as 
well as knowledge about the spatial configurations of the object. The goal 
of patch grouping is to find a set of patches that conform best to the object 
configuration, while the goal of pixel grouping is to find a set of pixels 
that have the best low-level feature similarity. Through pixel-patch in­
teractions and between-patch competition encoded in the solution space, 
these two processes are realized in one joint optimization problem. The 
globally optimal partition is obtained by solving a constrained eigenvalue 
problem. We demonstrate that the resulting object segmentation elimi­
nates false positives for the part detection, while overcoming occlusion 
and weak contours for the low-level edge detection. 

1 Introduction 

A good image segmentation must single out meaningful structures such as objects from 
a cluttered scene. Most current segmentation techniques take a bottom-up approach [5] , 
where image properties such as feature similarity (brightness, texture, motion etc), bound­
ary smoothness and continuity are used to detect perceptually coherent units. Segmentation 
can also be performed in a top-down manner from object models, where object templates 
are projected onto an image and matching errors are used to determine the existence of the 
object [1] . Unfortunately, either approach alone has its drawbacks. 

Without utilizing any knowledge about the scene, image segmentation gets lost in poor data 
conditions: weak edges, shadows, occlusions and noise. Missed object boundaries can then 
hardly be recovered in subsequent object recognition. Gestaltists have long recognized this 
issue, circumventing it by adding a grouping factor called familiarity [6]. Without being 
subject to perceptual constraints imposed by low level grouping, an object detection process 
can produce many false positives in a cluttered scene [3]. One approach is to build a better 
part detector, but this has its own limitations, such as increase in the complexity of classi­
fiers and the number of training examples required. Another approach, which we adopt in 



this paper, is based on the observation that the falsely detected parts are not perceptually 
salient (Fig. 1), thus they can be effectively pruned away by perceptual organization. 

Right arm: 7 Right leg: 3 Head: 4 Left arm: 4 Left leg: 9 

Figure 1: Human body part detection. A total of 27 parts are detected, each labeled by one of the 
five part detectors for arms, legs and head. False positives cannot be validated on two grounds. First, 
they do not form salient structures based on low-level cues, e.g. the patch on the floor that is labeled 
left leg has the same features as its surroundings. Secondly, false positives are often incompatible 
with nearby parts, e.g. the patch on the treadmill that is labeled head has no other patches in the 
image to make up a whole human body. These two conditions, low-level image feature saliency and 
high-level part labeling consistency, are essential for the segmentation of objects from background. 
Both cues are encoded in our pixel and patch grouping respectively. 

We propose a segmentation mechanism that is coupled with the object recognition pro­
cess (Fig. 2). There are three tightly coupled processes. I)Top-level: part-based object 
recognition process. It learns classifiers from training images to detect parts along with the 
segmentation patterns and their relative spatial configurations. A few approaches based on 
pattern classification have been developed for part detection [9,3] . Recent work on object 
segmentation [1] uses image patches and their figure-ground labeling as building blocks 
for segmentation. 2)Bottom-level: pixel-based segmentation process. This process finds 
perceptually coherent groups using pairwise local feature similarity. The local features we 
use here are contour cues. 3)Interactions: coupling object recognition with segmentation 
by linking patches with their corresponding pixels. With such a representation, we concur­
rently carry out object recognition and image segmentation processes. The final output is 
an object segmentation where the object group consists of pixels with coherent low-level 
features and patches with compatible part configurations. 

We formulate our object segmentation task in a graph partitioning framework. We repre­
sent low-level grouping cues with a graph where each pixel is a node and edges between the 
nodes encode the affinity of pixels based on their feature similarity [4]. We represent high­
level grouping cues with a graph where each detected patch is a node and edges between 
the nodes encode the labeling consistency based on prior knowledge of object part config­
urations. There are also edges connecting patch nodes with their supporting pixel nodes. 
We seek the optimal graph cut in this joint graph, which separates the desired patch and 
pixel nodes from the rest nodes. We build upon the computational framework of spectral 
graph partitioning [7], and achieve patch competition using the subspace constraint method 
proposed in [10]. We show that our formulation leads to a constrained eigenvalue problem, 
whose global-optimal solutions can be obtained efficiently. 

2 Segmentation model 

We illustrate our method through a synthetic example shown in Fig. 3. Suppose we are 
interested in detecting a human-like configuration. Furthermore, we assume that some 
object recognition system has labeled a set of patches as object parts. Every patch has a 
local segmentation according to its part label. The recognition system has also learned the 
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Figure 2: Model of object segmentation. Given an image, we detect edges using a set of oriented 
filter banks. The edge responses provide low-level grouping cues, and a graph can be constructed 
with one node for each pixel. Shown on the middle right are affinity patterns of five center pixels 
within a square neighbourhood, overlaid on the edge map. Dark means larger affinity. We detect a 
set of candidate body parts using learned classifiers. Body part labeling provides high-level grouping 
cues, and a consistency graph can be constructed with one node for each patch. Shown on the middle 
left are the connections between patches. Thicker lines mean better compatibility. Edges are noisy, 
while patches contain ambiguity in local segmentation and part labeling. Patches and pixels interact 
by expected local segmentation based on object knowledge, as shown in the middle image. A global 
partitioning on the coupled graph outputs an object segmentation that has both pixel-level saliency 
and patch-level consistency. 



statistical distribution of the spatial configurations of object parts. Given such information, 
we need to address two issues. One is the cue evaluation problem, i.e. how to evaluate 
low-level pixel cues, high-level patch cues and their segmentation correspondence. The 
other is the integration problem, i.e. how to fuse partial and imprecise object knowledge 
with somewhat unreliable low-level cues to segment out the object of interest. 
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Figure 3: Given the image on the left, we want to detect the object on the right). 11 patches of various 
sizes are detected (middle top). They are labeled as head(l), left-upper-arm(2, 9), left-lower-arm(3, 
10), left-leg (11), left-upper-leg(4), left-lower-leg(5), right-arm(6), right-leg(7, 8). Each patch has a 
partial local segmentation as shown in the center image. Object pixels are marked black, background 
white and others gray. The image intensity itself has its natural organization, e.g. pixels across a 
strong edge (middle bottom) are likely to be in different regions. Our goal is to find the best patch­
pixel combinations that conform to the object knowledge and data coherence. 

2.1 Representations 

We denote the graph in Fig. 2 by G = (V, E, W). Let N be the number of pixels and 
M the number of patches. Let A be the pixel-pixel affinity matrix, B be the patch-patch 
affinity matrix, and C be the patch-pixel affinity matrix. All these weights are assumed 
nonnegative. Let f3B and f3c be scalars reflecting the relative importance of Band C with 
respect to A. Then the node set and the weight matrix for the pairwise edge set E are: 

V {I,··· ,N, }V+1, . .. ,N+M), 
'"--v--' 

W(A , B , C; f3B, f3c) 

pixels 

[ 
A N x N 

f3c· CM x N 

patches 

f3c . C~ X M ] 
f3B . B Mx M . 

(1) 



Object segmentation corresponds to a node bipartitioning problem, where V = VI U V 2 

and VI n V 2 = 0. We assume VI contains a set of pixel and patch nodes that correspond to 
the object, and V 2 is the rest of the background pixels and patches that correspond to false 
positives and alternative labelings. Let Xl be an (N + M) x 1 vector, with Xl (k) = 1 
if node k E VI and 0 otherwise. It is convenient to introduce the indicator for V2 , where 
X 2 = 1 - Xl and 1 is the vector of ones. 

We only need to process the image region enclosing all the detected patches. The rest 
pixels are associated with a virtual background patch, which we denote as patch N + M, 
in addition to M - 1 detected object patches. Restriction of segmentation to this region of 
interest (ROI) helps binding irrelavent background elements into one group [10]. 

2.2 Computing pixel-pixel similarity A 

The pixel affinity matrix A measures low-level image feature similarity. In this paper, we 
choose intensity as our feature and calcuate A based on edge detection results. We first 
convolve the image with quadrature pairs of oriented filters to extract the magnitude of 
edge responses OE [4]. Let i denote the location of pixel i . Pixel affinity A is inversely 
correlated with the maximum magnitude of edges crossing the line connecting two pixels. 
A( i , j) is low if i, j are on the two sides of a strong edge (Fig. 4): 

. . _ ( _ _ 1_. [maXtE (Q,I ) OE(i + t . j)] 2) 
A(~ , J) - exp 2(J"~ maxk 0 E(k.) . 

o 

(2) 

A(1 ,3) ;:::: 1 
A(1 ,2) ;:::: 0 
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Figure 4: Pixel-pixel similarity matrix A is computed based on intensity edge magnitudes. 

2.3 Computing patch-patch compatibility B and competition 

For object patches, we evaluate their position compatibility according to learned statistical 
distributions. For object part labels a and b, we can model their spatial distribution by a 
Gaussian, with mean /L ab and variance ~ab estimated from training data. Let p be the object 
label of patch p. Let p be the center location of patch p. For patches p and q, B(p, q) is low 
if p, q form rare configurations for their part labels p and q (Fig. Sa): 

( IT - 1 ) B(p, q)= exp - -(p - q - /Lprj) ~ .. (p - q - /Lpq) . 2-- pq--
(3) 

We manually set these values for our image examples. As to the virtual background patch 
node, it only has affinity of 1 to itself. 

Patch compatibility measures alone do not prevent the desired pixel and patch group from 
including falsely detected patches and their pixels, nor does it favor the true object pixels to 
be away from unlabeled background pixels. We need further constraints to restrict a feasible 
grouping. This is done by constraining the partition indicator X. In Fig. Sb, there are four 
pairs of patches with the same object part labels. To encode mutual exclusion between 
patches, we enforce one winner among patch nodes in competition. For example, only one 
of the patches 7 and 8 can be validated to the object group: Xl (N + 7) + Xl (N + 8) = 1. 



We also set an exclusion constraint between a reliable patch and the virtual background 
patch so that the desired object group stands out alone without these unlabeled background 
pixels, e.g Xl (N + 1) + Xl (N + M) = 1. Formally, let S be a superset of nodes to be 
separated and let I . I denote the cardinality of a set. We have: 

L Xl(k) = 1, m = 1 : lSI· (4) 

7 and 8 cannot both be 
part of the object 

a) compatibility patches b) competition 

Figure 5: a) Patch-patch compatibility matrix B is evaluated based on statistical configuration plau­
sibility. Thicker lines for larger affinity. b) Patches of the same object part label compete to enter the 
object group. Only one winner from each linked pair of patches can be validated as part of the object. 

2.4 Computing pixel-patch association C 

Every object part label also projects an expected pixel segmentation within the patch win­
dow (Fig. 6). The pixel-patch association matrix C has one column for each patch: 

{ I if i is an object pixel of patch p, 
C(i,p) = 0: otherwise. 

For the virtual background patch, its member pixels are those outside the ROI. 

I Head detector -> 1 

Patch 1 • 
Arm detector -> 

19 12 
Patch 2 110 13 

l_ 

Leg detector -> I" 15 71 
Patch 11 

61 

si 
patches expected local segmentation association 

(5) 

Figure 6: Pixel-patch association C for object patches. Object pixels are marked black, background 
white and others gray. A patch is associated with its object pixels in the given partial segmentation. 

Finally, we desire (38 to balance the total weights between pixel and patch grouping so that 
M « N does not render patch grouping insignificant, and we want (3c to be large enough 
so that the results of patch grouping can bring along their associated pixels: 

ITAI (3B 
(3B = 0·01 1TB1 , (3c = maxC. (6) 

2.5 Segmentation as an optimization problem 

We apply the normalized cuts criterion [7] to the joint pixel-patch graph in Eg. (1): 

2 xTwXt 
maXE(X1) = L T ,s. t. L Xl(k) = 1, m = 1 : lSI· 

t = l X t DXt 
(7) 



D is the diagonal degree matrix of W, D(i, i) = Lj W(i,j) . Let x = Xl - Xfr~~'. 
By relaxing the constraints into the form of LT x = 0 [10], Eq. (7) becomes a constrained 
eigenvalue problem [10], the maximizer given by the nontrivial leading eigenvector: 

x* s. t. LT X = O. 

AX', 
1 - D - l L(LT D - l L) - l LT . 

(8) 

(9) 
(10) 

Once we get the optimal eigenvector, we compare 10 thresholds uniformly distributed 
within its range and choose the discrete segmentation that yields the best criterion E. Below 
is an overview of our algorithm. 

1: Compute edge response OE and calculate pixel affinity A, Eq. (2). 
2: Detect parts and calculate patch affinity B , Eq. (3). 
3: Formulate constraints Sand L among competing patches, Eq. (4). 
4: Set pixel-patch affinity C, Eq. (5). 
5: Calculate weights (3B and (3c , Eq. (6). 
6: Form Wand calculate its degree matrix D, Eq. (1). 
7: Solve QD- lWx* = AX', Eq. (9,10). 
8: Threshold x' to get a discrete segmentation. 

3 Results and conclusions 

In Fig. 7, we show results on the 120 x 120 synthetic image. Image segmentation alone gets 
lost in a cluttered scene. With concurrent segmentation and recognition, regions forming 
the object of interest pop out, with unwanted edges (caused by occlusion) and weak edges 
(illusory contours) corrected in the final segmentation. It is also faster to compute the 
pixel-patch grouping since the size of the solution space is greatly reduced. 

I 
segmentation alone concurrent segmentation and recognition 

I 
44 seconds 17 seconds 

Figure 7: Eigenvectors (row 1) and their segmentations (row 2) for Fig. 3. On the right, we show the 
optimal eigenvector on both pixels and patches, the horizontal dotted line indicating the threshold. 
Computation times are obtained in MATLAB 6.0 on a PC with 10Hz CPU and 10 memory. 

We apply our method to human body detection in a single image. We manually label five 
body parts (both arms, both legs and the head) of a person walking on a treadmill in all 



32 images of a complete gait cycle. Using the magnitude thresholded edge orientations 
in the hand-labeled boxes as features, we train linear Fisher classifiers [2] for each body 
part. In order to account for the appearance changes of the limbs through the gait cycle, we 
use two separate models for each arm and each leg, bringing the total number of models 
to 9. Each individual classifier is trained to discriminate between the body part and a 
random image patch. We iteratively re-train the classifiers using false positives until the 
optimal performance is reached over the training set. In addition, we train linear color­
based classifiers for each body part to perform figure-ground discrimination at the pixel 
level. Alternatively a general model of human appearance based on filter responses as in [8] 
could be used. In Fig. 8, we show the results on the test image in Fig. 2. Though the pixel­
patch affinity matrix C, derived from the color classifier, is neither precise nor complete, 
and the edges are weak at many object boundaries, the two processes complement each 
other in our pixel-patch grouping system and output a reasonably good object segmentation. 

segmentation alone: 68 seconds segmentation-recognition: 58 seconds 

Figure 8: Eigenvectors and their segmentations for the 261 x 183 human body image in Fig. 2. 
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