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Abstract

We propose a framework for classifier design based on discriminative
densities for representation of the differences of the class-conditional dis-
tributions in a way that is optimal for classification. The densities are
selected from a parametrized set by constrained maximization of some
objective function which measures the average (bounded) difference, i.e.
the contrast between discriminative densities. We show that maximiza-
tion of the contrast is equivalent to minimization of an approximation
of the Bayes risk. Therefore using suitable classes of probability den-
sity functions, the resulting maximum contrast classifiers (MCCs) can
approximate the Bayes rule for the general multiclass case. In particular
for a certain parametrization of the density functions we obtain MCCs
which have the same functional form as the well-known Support Vec-
tor Machines (SVMs). We show that MCC-training in general requires
some nonlinear optimization but under certain conditions the problem
is concave and can be tackled by a single linear program. We indicate
the close relation between SVM- and MCC-training and in particular we
show that Linear Programming Machines can be viewed as an approxi-
mate realization of MCCs. In the experiments on benchmark data sets,
the MCC shows a competitive classification performance.

1 Introduction

In the Bayesian framework of classification the ultimate goal of a classifier f(x) : RP —
{1,..., M} is to minimize the expected risk of misclassification measured by {(3, j) which
denotes the loss for assigning a given feature vector to class j, while it actually belongs to
class 7, with M being the number of classes. With p(x | 7) being the class-conditional prob-
ability density functions (PDFs) and ; denoting the corresponding apriori probabilities of



class-membership we have the risk
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With the standard “zero-one” loss function (7, j) = 1 — 6;5, where §;; denotes the Kro-
necker delta, it is easy to show (see e.g. [3]) that the expected risk is minimized, if one
chooses the classifier

F(x) = argmaxmip(x| i @)

The resulting lower bound on R is known as the Bayes risk which limits the average perfor-
mance of the classifier f(x). Because the class-conditional densities are usually unknown,
one way to realize the above classifier is to use estimates of these densities instead. This
leads to the so-called plug-in classifiers, which are Bayes-consistent if the density estima-
tors are consistent (e.g. [9]). Due to the notoriously slow convergence of density estimates
the plug-in scheme usually isn’t the best recipe for classifier design and as an alternative
many discriminant functions including Neural Networks (see [1, 9] for an overview) and
Support Vector Machines (SVMs) [2, 12] have been proposed which are trained directly to
minimize the empirical classification error.

We recently proposed a method for the design of density-based classifiers without resort-
ing to the usual density estimation schemes of the plug-in approach [6]. Instead we utilized
discriminative densities with parameters optimized to solve the classification problem. The
approach requires maximization of the average bounded difference between class (discrim-
inative) densities p(x; |6;), which we refer to as the contrast of the underlying “true” dis-
tributions. The ymax-bounded contrast is the expectation E[C (X, ¥; Ymax)] With

C(%, Y5 Ymax) = D min{Ymax, myp(X; 8,) — m;p(x; 6;)}. @)
7Y

The idea is to find M discriminative densities p(x; 6;), which represent the underlying
distributions with “true” densities p(x | ¢) in a way, that is optimal for classification. When
maximizing the contrast with respect to the parameters @; of the discriminative densities
the upper bound ymax plays a central role because it prevents the learning algorithm from
increasing the differences between discriminative densities where the differences between
the true densities are already large.

In this paper we show that with some slight modification the contrast can be viewed as
an approximation of the negative Bayes risk (up to some constant shift and scaling) which
is valid for the binary as well as for the general multiclass case. Therefore for certain
parametrizations of the discriminative densities MCCs allow to find an optimal trade-off
between the classical plug-in Bayes-consistency and the consistency which arises from di-
rect minimization of the approximate Bayes risk. Furthermore, for a particular parametriza-
tion of the PDFs, we obtain certain kinds of Linear Programming Machines (LPMs) [4] as
(in general) approximate solutions of maximum contrast estimation. In that way MCCs
provide a Bayes-consistent approach to realize multiclass LPMs / SVMs and they suggest
an interpretation of the magnitude of the LPM / SVM classification function in terms of
density differences which provide a probabilistic measure of confidence. For the case of
LPMs we propose an extended optimization procedure for maximization of the contrast
via iteration of linear optimizations. Inspired by the MCC-framework, for the resulting
Sequential Linear Programming Machines (SLPM) we propose a new regularizer which
allows to find an optimal trade-off between the above mentioned two approaches to Bayes
consistency. In the experiments we analyse the performance of the SLPM on simulated and
real world data.



2 Maximum Contrast Estimation

For the design of MCCs the first step, which is the same as for the plug-in concept, requires
to replace the unknown class-conditional densities of the Bayes classifier (2) by suitably
parametrized PDFs. Then, instead of choosing the parameters for an approximation of
the original (true) densities (e.g. by maximum likelihood estimation) as with the plug-in
scheme, the density parameters are choosen to maximize the so-called contrast which is
the expected value of the ynax-bounded density differences as defined in (3).

For the case of an unbounded contrast, i.e. ymax — 00, the general maximum contrast
solution can be found analytically and for notational simplicity we derive it for the binary
case with equal apriori probabilities, where the contrast can be written as

/ (p1(x) — p2(x))p(x | 1) dx + / (p2(x) — p1(x))p(x | 2) dx
- / (p(x| 1) — p(x| 2))p1 (x) dx + / (p(x]2) — p(x | 1))ps(x) dx.

Thus the unbounded contrast is maximized for ;(x) = §(x — x1),p2(x) = §(x — x2)
with the peaks of the Delta (Dirac) functions located at x; = arg maxx(p(x|1) —p(x|2))
and xp = arg maxx(p(x|2) —p(x| 1)), respectively. Obviously, these are not the best dis-
criminative densities we may think of and therefore we require an appropriate bound ymax.
For finite ymax, Maximization of the contrast enforces a redistribution of the estimated
probability mass and gives rise to a constrained linear optimization problem in the space of
discriminative densities which may be solved by variational methods in some cases.

The relation between contrast and Bayes risk becomes more convenient when we slightly
modify the above definition (3) by a unit upper bound and by adding a lower bound on the
n-scaled density differences:

1 .
C(x,y; n) = max{~1, -— > min{1, n- [mp(x; 8,) — m;p(x; 6;)]}}  (4)
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with scale factor n = 1/ymax. Therefore, for an infinite scale factor n the (expected)

contrast C(n) = E[C(x,y; n)] approaches the negative Bayes risk up to constant shift and
scaling:

. 1 1 1 1,

R = lim B[5 - 5C(x,9;n)] = 5 — 5 lim C(n). (5)
Thus the scale factor defines a subset of the input-space, which includes the decision bound-
ary and which becomes increasingly focused in their vicinity as n — oo. The extent of the
region is defined by the bounds +1 /5 on the difference between discriminative densities.
In terms of the contrast function it can be defined as

S={x:3y:|C(x,y; n)| < 1}. (6)

Since for MCC-training we maximize the empirical contrast, i.e. the corresponding sample
average of C(x,y; n), the scale factor then defines a subset of the training data which has
impact on learning of the decision boundary. Thus for increasing scale factor the relative
size of that subset is shrinking. However for increasing size of the training set the scale fac-
tor can be gradually increased and then, for suitable classes of PDFs, MCCs can approach
the Bayes rule. In other words, 7 acts as a regularization parameter such that, for particular
choices of the PDF class convergence to the Bayes classifier can be achieved if the quality
of the approximation of the loss function is gradually increased for increasing sample sizes.
In the following section we shall consider such a class of PDFs which is flexible enough
and which turns out to include a certain kind of SVMs.



3 MCC-Realizations

In the following we shall first consider a particularly useful parametrization of the dis-
criminative densities which gives rise to classifiers which in the binary case have the same
functional form as SVMs up to a “missing” bias term in the MCC-case. For training of
these MCCs we derive a suitable objective function which can be maximized by sequential
linear programming where we show the close relation to training of Linear Programming
Machines.

3.1 Density Parametrization

We first have to choose a set of candidate functions from which we select the required PDF.
Because this set should provide some flexibility with respect to contrast maximization the
usual kernel density estimator (KDE)[11]

ZK X, X;) )
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with index set I; containing indices of examples from class j and with normalized kernel
functions according to [ K(x,-)dx = 1 isn’t a quite good choice, since the only free
parameter is the kernel bandwidth which doesn’t allow for any local adaptation. On the
other hand if we allow for local variation of the bandwidth we get a complicated contrast
which is difficult to maximize due to nonlinear dependencies on the parameters. The same
is true if we treat the kernel centers as free parameters. However, if we modify the kernel
density estimator to have flexible mixing weights according to

Zwm X,X;) = wTk j(x) with|lwj|li =1, w; >0 (8)
i€l;

we get an objective function, which is linear in the mixing parameters w;; under certain
conditions. Thus we have class-specific densities with mixing weights w;; which control
the contribution of a single training example to the PDF.

With that choice we achieve plug-in Bayes-consistency for the case of equal mixing
weights, since then we have the usual kernel density estimator (KDE), which, besides
some mild assumptions about the distributions, requires a vanishing kernel bandwidth for
N — .

3.2 Obijective Function

For notational simplicity in the following we shall incorporate the scale factor n and the

mixing weigths w ; into a common parameter vector & = (a7 ,...,a%;)T with a; = nw;
and |laj||1 = |lax|l1 > 0Vj, k. Further we define the scaled density difference
Dij (X; a) = wla;‘Fkl(x) — ﬁ]a]TkJ (X) (9)

so that we can write the empirical contrast Cy («), i.e. the sample average over N training
examples, as:

1_ 1 Zmin{l,Djk(xi; a)}) - 1] (10)
k#3j
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where the assignment variables 8; € {0,1} realize the maximum function in (4). With
fixed assignment variables 3;, Cn is concave and maximization with respect to o gives rise



to a linear optimization problem. On the other hand, for fixed a maximization with respect
to the B; is achieved by setting 8; = 0 for negative terms. This suggests a sequential linear
optimization strategy for overall maximization of the contrast which shall be introduced in
detail in the following section.

Since we have already incorporated n as a scaling factor into the parameter vector a, 7 is
now identified with the norm ||a;||1. Therefore the scale factor can be adjusted implicitly
by a regularization term which penalizes some suitable norm of the a;. Thus a suitable
objective function can be defined by

Cn(a,\) =Cn(a) — AP(a), A>0 (11)

with X determining the weight of the penalty, i.e. the degree of regularization. We now
consider several instances of the case where the penalty corresponds to some p-norm of a.
With the 1-norm, for A — oo the probability mass of the discriminative densities is con-
centrated on those two kernel-functions which yield the highest average density difference.
Although that property forces the sparsest solution for large enough A, clearly, that solution
isn’t Bayes-consistent in general because as pointed out in Sec.2, for A — oo all proba-
bility mass of the discriminative densities is concentrated at the two points with maximum
average density difference.

Conversely taking P(a) = ||e||3, which resembles the standard SVM regularizer [10],
yields the KDE with equal mixing weights for A — oo. Indeed, it is easy to see that all
p-norm penalties with p > 1 share this convenient property, which guarantees “plug-in”
Bayes consistency in the case where the solution is totally determined by the regularizer.
In that case kernel density estimators are achieved as the “default” solution. Therefore we
chose a combination of the 1-norm with the maximum-norm
M
Ple) =Y (el + llexjlloo) (12)

=1

which is easily incorporated into a linear program, as to be shown in the following. For that
kind of penalty in the limiting case A — oo we achieve an equal distribution of the weights
which corresponds to the kernel density estimator (KDE) solution. In that way we have a
nice trade-off between two kinds of Bayes consistency: for increasing A the class-specific
densities converge to the KDE with equal mixing weights, whereas for decreasing A the
probability mass of the discriminative densities is more and more concentrated near the
Bayes-optimal decision boundary. By a suitable choice of the kernel width and the scale
of the weights, e.g. via cross-validation, the solution with fastest convergence to the Bayes
rule may be selected.

With an 1-norm penalty on the weights and on the vector £ of soft margin slack variables
we get the Linear Programming Machine which requires to minimize

N
lally + ClI€lly subjectto y; > yja; K (xi,%;) > 1— &, & >0 (13)

j=1
with y € {—1,1} and with the above constraints on a. Dividing the objective by C,
subtracting IV, setting 1—¢&; = -y; and turning minimization to maximization of the negative
objective shows that LPM training corresponds to a special case of MCC training with fixed
Bi = 1 and 1-norm regularizer with A = 1/C.

3.3 Sequential Linear Programming

Estimation of mixing weights is now achieved by maximizing the sample contrast with
respect to the a;; and the assignment variables ;. This can be achieved by the following
iterative optimization scheme:



1. Initialization: 8; = 1Vi
2. Maximization w.r.t. « for fixed 3:

M M
maximize Y "D 8: Y vije — A (adil + D o)
j=1

j=1i€l; k#j i€l
subject to vijx <1, Djr(xi, @) — ik > 0, k # J,
llojlls = llokll > 1 V5,5 ald), > as; > 0¥, j

3. Maximization w.r.t. 8 for fixed a:

B; = 1, Ej;ﬁyi Djk(xi,a) >1-M
¢ 0, otherwise.

4. If convergence in contrast then stop else proceed with step 2.

Where +;;, are slack variables, measuring the part of the density difference D (x;, o)
which can be charged to the objective function. The constraint [|a;|[; > 1 in the linear
program was chosen in order to prevent the trivial solution a = 0 which may otherwise
appear for larger values of A. Since we used unnormalized Gaussian kernel functions with
K(x,x) = 1, i.e. we excluded all multiplicative density constants, that constraint doesn’t
exclude any useful solutions for the weights.

4 Experiments

In the following section we consider the task of solving binary classification problems
within the MCC-framework, using the above SLPM with Gaussian kernel function. The
first experiment illustrates the behaviour of the MCC for different values for the regu-
larization A by means of a simple two-dimensional toy dataset. The second experiment
compares the classification performance of the MCC with those of the SVM and Kernel-
Density-Classifier (KDC) which is a special case of the MCC with equal weighting of each
kernel function. To this end, we selected four frequently used benchmark datasets from the
UCI Machine Learning Repository.

The two-dimensional toy dataset consists of 300 data points, sampled from two overlapping
isotropic normal distributions with a mutual distance of d = 2.8 and standard deviation g.
Figure 1 shows the solution of the MCC for two different values of A (only data points
with non-zero weights according the criterion a; > 10=% are marked by symbols). In
both figures, data points with large mixing weights are located near the decision border. In
particular for small X there are regions of high contrast |C| alongside the decision function
(illustrated by isolines). For increasing A the number of data points with non-zero «; in-
creases. At the same time, one can note a decrease of the difference between the weights.
Regions with contrast |C| > 1 are highlighted gray. For small values of ), these regions
are nearer to the decision border than for large values. This illustrates that for increasing
A the quality of the approximation of the loss function decreases. In both figures, several
data points are misclassified with a contrast |C| > 1. The MCC identified those data points
as outliers and deactivated them during the training (encircled symbols).

The second experiment demonstrates the performance of the MCC in comparison with
those of a Support Vector Machine, as one of the state-of-the-art binary classifiers, and
with the KDC. For this experiment we selected the Pima Indian Diabetes, Breast-Cancer,
Heart and Thyroid dataset from the UCI Machine Learning repository. The Support Vector
Machine was trained using the Sequential Minimal Optimization algorithm by J. Platt[7]
adjusted according to the modification proposed by S.S. Keerthi [5].



300 datapoints /A = 0.2 300 datapoints / A = 4.2

Figure 1: Two MCC solutions for the two-dimensional toy dataset for different values of A
(left: A = 0.2, right: A = 4.2). The symbols = and A depict the positions of data points
with with non-zero «;. The size of each symbol is scaled according the value of the cor-
responding «;. Encircled symbols have been deactivated during the training (symbols for
deactivated data points are not scaled according to a;, since in most cases «; is zero). The
absolute value of the contrast is illustrated by the isolines while the sign of the contrast de-
picts the binary classification of the classifier. The region with |C| < 1 which corresponds
to S as defined in (6) is colored white and the complement colored gray. The percentage
of data points that define the solution is 8.7% (left figure) and 20% (right figure) of the
dataset.

The experimental setup was comparable with that in [8]: After normalization to zero
mean and unit standard deviation, each dataset was divided 100 times in different
pairs of disjoint train- and testsets with a ratio of 60%:40% (provided by G. Ratsch at
http://ida.first.gmd.de/~raetsch/data/benchmarks.htm). Since we used for all classifiers the
Gaussian kernel function, all three algorithms are parametrized by the bandwidth o. Addi-
tionally, for the SVM and MCC the regularization value A had to be chosen. The optimal
parametrization was chosen by estimating the generalization performance for different val-
ues of bandwidth and regularization by means of the average test error on the first five
dataset partitions. More precisely, a first coarse scan was performed, followed by a fine
scan in the interval near the optimal values of the first one. Each scan considered 1600
different combinations of o and A, resp. ¢ and C . For parameter pairs with identical test
error, the pair constructing the sparsest solution was kept. Finally, the reported values in
Tab.1 and Tab.2 are averaged over all 100 dataset partitions.

Table 1 shows the optimal parametrization (o, A) of the MCC in combination with the
classification rate and sparseness of the solution (measured as percentage non-zero a;).
Additionally, the corresponding values after the first MCC iteration are given in brackets.
The last two columns show the absolute number of iterations and the final number of de-
activated examples. For all four datasets the MCC is able to find a sparse solution. In
particular for the Heart, Breast-Cancer and Diabetes dataset the solution of the MCC is
significantly sparser than those of the SVM (see Tab.2). Nevertheless, Tab.2 indicates that
the classification rates of the MCC are competitive with those of the SVM.

5 Conclusion

The MCC-approach provides an understanding of SVMs / LPMs in terms of generative
modelling using discriminative densities. While usual unsupervised density estimation
schemes try to minimize some distance criterion (e.g. Kullback-Leibler divergence) be-



Table 1: Optimal parametrization (o, ), classification rate, percentage of non-zero «;,
number of iterations of the MCC and number of 8; = 0. The results are averaged over all
100 dataset partitions. For the classification rate and percentage of non-zero a-coefficients
the corresponding value after the first MCC iteration is given in brackets.

| Dataset [ o [ A [ Classifratt | #a>10° [ #lter. [ #8=0 |
Breast-Cancer || 1.38 | 12.17 || 74.3% (74.4%) 13.6% (13.8%) 2.23 2.6
Heart 2.60 | 2.066 || 84.3% (84.1%) | 20.4% (21.2%) | 3.10 6.4
Thyroid 049 | 10°° || 955% (955%) | 46.1% (46.1%) | 1.00 0.0
Diabetes 452 | 2.624 || 76.6% (765%) | 53% (55%) | 5.86 40.7

Table 2: Summary of the performance of the KDC, SVM and MCC for the four benchmark
datasets. Given are the classification rates with percentage of non-zero «; (in brackets).
Note that our results for the SVM are slightly better to those reported in [8]. One reason
could be the coarse parameter selection for the SVM as already mentioned by the author.

[ Dataset | KDC | SVM | MCC |
Breast-Cancer 73.1% (100 %) 745% (58.5%) 74.3% (13.6 %)
Heart 84.1% (100 %) 84.4% (60.9%) 84.3% (20.4%)
Thyroid 95.6 % (100 %) 95.7% (15.8%) 955% (46.1%)
Diabetes 74.2% (100 %) 76.7% (53.6%) 76.6% (5.3%)

tween the models and the true densities, MC-estimation aims at learning of densities which
represent the differences of the underlying distributions in an optimal way for classifica-
tion. Future work will address the investigation of the general multiclass performance and
the capability to cope with misslabeled data.
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