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Abstract

We formulate the regression problem as one of maximizing the mini-
mum probability, symbolized by Ω, that future predicted outputs of the
regression model will be within some ±ε bound of the true regression
function. Our formulation is unique in that we obtain a direct estimate
of this lower probability bound Ω. The proposed framework, minimax
probability machine regression (MPMR), is based on the recently de-
scribed minimax probability machine classification algorithm [Lanckriet
et al.] and uses Mercer Kernels to obtain nonlinear regression models.
MPMR is tested on both toy and real world data, verifying the accuracy
of the Ω bound, and the efficacy of the regression models.

1 Introduction

The problem of constructing a regression model can be posed as maximizing the minimum
probability of future predictions being within some bound of the true regression function.
We refer to this regression framework as minimax probability machine regression (MPMR).
For MPMR to be useful in practice, it must make minimal assumptions about the distribu-
tions underlying the true regression function, since accurate estimation of these distribution
is prohibitive on anything but the most trivial regression problems. As with the minimax
probability machine classification (MPMC) framework proposed in [1], we avoid the use
of detailed distribution knowledge by obtaining a worst case bound on the probability that
the regression model is within some ε > 0 of the true regression function. Our regres-
sion formulation closely follows the classification formulation in [1] by making use of the
following theorem due to Isii [2] and extended by Bertsimas and Sethuraman [3]:

supE[z]=z̄,Cov[z]=Σz

Pr{aT z ≥ b} =
1

1 + ω2
, ω2 = infaT z≥b(z − z̄)T Σ−1

z (z − z̄) (1)

where a and b are constants, z is a random vector, and the supremum is taken over all distri-
butions having mean z̄ and covariance matrix Σz. This theorem assumes linear boundaries,
however, as shown in [1], Mercer kernels can be used to obtain nonlinear versions of this
theorem, giving one the ability to estimate upper and lower bounds on probability that
points generated form any distribution having mean z̄ and covariance Σz, will be on one
side of a nonlinear boundary. In [1], this formulation is used to construct nonlinear clas-
sifiers (MPMC) that maximize the minimum probability of correct classification on future
data.



In this paper we exploit the above theorem (??) for building nonlinear regression functions
which maximize the minimum probability that the future predictions will be within an ε to
the true regression function. We propose to implement MPMR by using MPMC to con-
struct a classifier that separates two sets of points: the first set is obtained by shifting all of
the regression data +ε along the dependent variable axis; and the second set is obtained by
shifting all of the regression data −ε along the dependent variable axis. The the separating
surface (i.e. classification boundary) between these two classes corresponds to a regression
surface, which we term the minimix probability machine regression model. The proposed
MPMR formulation is unique because it directly computes a bound on the probability that
the regression model is within ±ε of the true regression function (see Theorem 1 below).

The theoretical foundations of MPMR are formalized in Section 2. Experimental re-
sults on synthetic and real data are given in Section 3, verifying the accuracy of
the minimax probability regression bound and the efficacy of the regression mod-
els. Proofs of the two theorems presented in this paper are given in the appendix.
Matlab and C source code for generating MPMR models can be downloaded from
http://www.cs.colorado.edu/∼grudic/software.

2 Regression Model

We assume that learning data is generated from some unknown regression function f :
<d 7→ < that has the form:

y = f(x) + ρ (2)
where x ∈ <d are generated according to some bounded distribution Λ, y ∈ <,
E[ρ] = 0, V ar[ρ] = σ2, and σ ∈ < is finite. We are given N learning examples
Γ = {(x1, y1), ..., (xN , yN )}, where ∀i ∈ {1, ..., N}, xi = (xi1, ..., xid) ∈ <d is gen-
erated from the distribution Λ, and yi ∈ <. The goal of our formulation is two-fold: first
we wish to use Γ to construct an approximation f̂ of f , such that, for any x generated from
the distribution Λ, we can approximate ŷ using

ŷ = f̂(x) (3)
The second goal of our formulation is, for any ε ∈ <, ε > 0, estimate the bound on the
minimum probability, symbolized by Ω, that f̂(x) is within ε of y (define in (2)):

Ω = inf Pr {|ŷ − y| ≤ ε} (4)
Our proposed formulation of the regression problem is unique because we obtain direct
estimates of Ω. Therefore we can estimate the predictive power of a regression function by
a bound on the minimum probability that we are within ε of the true regression function. We
refer to a regression function that directly estimates (4) as a mimimax probability machine
regression (MPMR) model.

The proposed MPMR formulation is based on the kernel formulation for mimimax proba-
bility machine classification (MPMC) presented in [1]. Therefore, the MPMR model has
the form:

ŷ = f̂ (x) =

N
∑

i=1

βiK (xi,x) + b (5)

where, K (xi,x) = ϕ(xi)ϕ(x) is a kernel satisfying Mercer’s Conditions, xi, ∀i ∈
{1, ..., N}, are obtained from the learning data Γ, and βi, b ∈ < are outputs of the MPMR
learning algorithm.

2.1 Kernel Based MPM Classification

Before formalizing the MPMR algorithm for calculating βi and b from the training data Γ,
we first describe the MPMC formulation upon which it is based. In [1], the binary classifi-
cation problem is posed as one of maximizing the probability of correctly classifying future



data. Specifically, two sets of points are considered, here symbolized by {u1, ...,uNu
},

where ∀i ∈ {1, ..., Nu},ui ∈ <m, belonging to the first class, and {v1, ...,vNv
}, where

∀i ∈ {1, ..., Nv},vi ∈ <m, belonging to the second class. The points ui are assumed to
be generated from a distribution that has mean u and a covariance matrix Σu, and corre-
spondingly, the points vi are assumed to be generated from a distribution that has mean v
and a covariance matrix Σv. For the nonlinear kernel formulation, these points are mapped
into a higher dimensional space ϕ : <m 7→ <h as follows: u 7→ ϕ(u) with corresponding
mean and covariance matrix (ϕ(u),Σϕ(u)), and v 7→ ϕ(v) with corresponding mean and

covariance matrix (ϕ(v),Σϕ(v)). The binary classifier derived in [1] has the form (c = −1
for the first class and c = +1 for the second):

c = sign

[

Nu+Nv
∑

i=1

γiK
c (zi, z) + bc

]

(6)

where Kc (zi, z) = ϕ(zi)ϕ(z), zi = ui for i = 1, ..., Nu, zi = vi−Nu
for i =

Nu + 1, ..., Nu + Nv , and γ = (γ1, ..., γNu+Nv
), bc obtained by solving the following

optimization problem:

min
γ
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}

s.t.γT
(

k̃u − k̃v

)

= 1 (7)

where K̃u = Ku −1Nu
k̃u; where K̃v = Kv −1Nv

k̃v; where k̃v, k̃u ∈ <Nu+Nv defined
as: [k̃v]i = 1

Nv

∑Nv

j=1 Kc(vj , zi) and [k̃u]i = 1
Nu

∑Nu

j=1 Kc(uj , zi); where 1k is a k
dimensional column vector of ones; where Ku contains the first Nu rows of the Gram
matrix K (i.e. a square matrix consisting of the elements Kij = Kc(zi, zj)); and finally
Kv contains the last Nv rows of the Gram matrix K. Given that γ solves the minimization
problem in (7), bc can be calculated using:

bc = γT k̃u − κ

√

1

Nu

γT K̃T
uK̃uγ = γT k̃v + κ

√

1

Nv

γT K̃T
v K̃vγ (8)

where,

κ =

(
√

1

Nu

γT K̃T
uK̃uγ +

√

1

Nv

γT K̃T
v K̃vγ

)−1

(9)

One significant advantage of this framework for binary classification is that, given perfect
knowledge of the statistics u, Σu, v, Σv, the maximum probability of incorrect classifica-
tion is bounded by 1 − α, where α can be directly calculated from κ as follows:

α =
κ2

1 + κ2
(10)

This result is used below to formulate a lower bound on the probability that that the ap-
proximated regression function is within ε of the true regression function.

2.2 Kernel Based MPM Regression

In order to use the above MPMC formulation for our proposed MPMR framework, we first
take the original learning data Γ and create two classes of points ui ∈ <d+1 and vi ∈ <d+1,
for i = 1, ..., N , as follows:

ui = (yi + ε, xi1, xi2, ..., xid)
vi = (yi − ε, xi1, xi2, ..., xid)

(11)

Given these two sets of points, we obtain γ by minimizing equation (7). Then, from (6),
the MPM classification boundary between points ui and vi is given by

2N
∑

i=1

γiK
c (zi, z) + bc = 0 (12)

We interpret this classification boundary as a regression surface because it acts to separate
points which are ε above the y values in the learning set Γ, and ε below the y values



in Γ. Furthermore, given any point x = (x1, ..., xd) generated from the distribution Λ,
calculating ŷ the regression model output (5), involves finding a ŷ that solves equation (12),
where z = (ŷ, x1, ..., xd), and, recalling from above, zi = ui for i = 1, ..., N , zi = vi−N

for i = N + 1, ..., 2N (note that Nu = Nv = N ). If Kc (zi, z) is nonlinear, solving (12)
for ŷ is in general a nonlinear single variable optimization problem, which can be solved
using a root finding algorithm (for example the Newton-Raphson Method outlined in [4]).
However, below we present a specific form of nonlinear Kc (zi, z) that allows (12) to be
solved analytically.

It is interesting to note that the above formulation of a regression model can be derived
using any binary classification algorithm, and is not limited to the MPMC algorithm.
Specifically, if a binary classifier is built to separate any two sets of points (11), then
finding a crossing point ŷ at where the classifier separates these classes for some input
x = (x1, ..., xd), is equivalent to finding the output of the regression model for input
x = (x1, ..., xd). It would be interesting to explore the efficacy of various classification al-
gorithms for this type of regression model formulation. However, as formalized in Theorem
1 below, using the MPM framework gives us one clear advantage over other techniques. We
now state the main result of this paper:

Theorem 1: For any x = (x1, ..., xd) generated according to the distribution Λ, assume
that there exists only one ŷ that solves equation (12). Assume also perfect knowledge of the
statistics u, Σu, v, Σv. Then, the minimum probability that ŷ is within ε of y (as defined in
(2)) is given by:

Ω = inf Pr {|ŷ − y| ≤ ε} =
κ2

1 + κ2
(13)

where κ is defined in (9).

Proof: See Appendix.

Therefore, from the above theorem, the MPMC framework directly computes the lower
bound on the probability that the regression model is within ε of the function that generated
the learning data Γ (i.e. the true regression function). However, one key requirement of the
theorem is perfect knowledge of the statistics u, Σu, v, Σv. In the actual implementation of
MPMR, these statistics are estimated from Γ, and it is an open question (which we address
in Section 3) as to how accurately Ω can be estimated from real data.

In order to avoid the use of nonlinear optimizations techniques to solve (12) for ŷ, we
restrict the form of the kernel Kc (zi, z) to the following:

Kc (zi, z) = y′
iŷ + K (xi,x) (14)

where K (xi,x) = ϕ(xi)ϕ(x) is a kernel satisfying Mercer’s Conditions; where z =
(ŷ, x1, ..., xd); where zi = ui, y

′
i = yi + ε for i = 1, ..., N ; and where zi = vi−N , y′

i−N =
yi − ε for i = N + 1, ..., 2N . Given this restriction on Kc (zi, z), we now state our final
theorem which uses the following lemma:

Lemma 1:
k̃u − k̃v = 2εy′ (15)

Proof: See Appendix.

Theorem 2: Assume that (14) is true. Then all of the following are true:
Part 1: Equation (12) has an analytical solution as defined in (5), where

βi = −2ε(γi + γi+N )

b = −2εbc

Part 2: K̃u = K̃v



Table 1: Results over 100 random trials for sinc data: mean squared errors and the stan-
dard deviation; MPTDε: fraction of test points that are within ε = 0.2 of y; predicted Ω:
predicted probability that the model is within ε = 0.2 of y.

mean squared error MPTDε predicted Ω

σ2 = 0 mean (std) 0.0 (0.0) 1.0 (0.0) 1.0 (0.0)
σ2 = 0.5 mean (std) 0.0524 (0.0386) 0.6888 (0.1133) 0.1610 (0.0229)
σ2 = 1.0 mean (std) 0.2592 (0.3118) 0.3870 (0.1110) 0.0463 (0.0071)

Part 3: The problem of finding an optimal γ in (7) is reduced to solving the following
linear least squares problem for t ∈ <2N−1:

min
t

∥

∥

∥
K̃u (γo + Ft)

∥

∥

∥

2

where γ = γo + Ft , γo =
(

k̃u − k̃v

)

/
∥

∥

∥
k̃u − k̃v

∥

∥

∥

2

, and F ∈ <2N×(2N−1) is an

orthogonal matrix whose columns span the subspace of vectors orthogonal to k̃u − k̃v .

Proof: See Appendix.

Therefore, Theorem 2 establishes that the MPMR formulation proposed in this paper has a
closed form analytical solution, and its computational complexity is equivalent to solving
a linear system of 2N − 1 equations in 2N − 1 unknowns.

3 Experimental Results

For complete implementation details of the MPMR algorithm used in the
following experiments, see the Matlab and C source code available at
http://www.cs.colorado.edu/∼grudic/software.

Toy Sinc Data: Our toy example uses the noisy sinc function yi = sin(πxi)/(πxi) +
νi i = 1, ..., N , where νi is drawn from a Gaussian distribution with mean 0 and variance
σ2 [5]. We use a RBF kernel K(a,b) = exp(−|a− b|2) and N = 100 training examples.
Figure 1 (a), (b), and (c), and Table 1 show the results for different variances σ2 and a
constant value of ε = 0.2. Figure 1 (d) and (e) illustrate how different tube sizes 0.05 ≤
ε ≤ 2 affect the mean squared error (on 100 random test points), the predicted Ω and
measured percentage of test data within ε (here called MPTDε) of the regression model.
Each experiment consists of 100 random trials. The average mean squared error in (e)
has a small deviation (0.0453) over all tested ε and always was within the range 0.19 to
0.35. This indicates that the accuracy of the regression model is essentially independent
from the choice of ε. Also note that the mean predicted Ω is a lower bound on the mean
MPTDε. The tightness of this lower bound varies for different amounts of noise (Table 1)
and different choices of ε (Figure 1 d).

Boston Housing Data: We test MPMR on the widely used Boston housing regression
data available from the UCI repository. Following the experiments done in [5], we use the
RBF kernel K(a,b) = exp(−‖a − b‖/(2σ2)), where (2σ2)) = 0.3 · d and d = 13 for
this data set. No attempt was made to pick optimal values for σ using cross validation.
The Boston housing data contains 506 training examples, which we randomly divided into
N = 481 training examples and 25 testing examples for each test run. 100 such random
tests where run for each of ε = 0.1, 1.0, 2.0, ..., 10.0. Results are reported in Table 2 for 1)
average mean squared errors and the standard deviation; 2) MPTDε: fraction of test points
that are within ε of y and the standard deviation; 3) predicted Ω: predicted probability that
the model is within ε of y and standard deviation. We first note that the results compare
favorably to those reported for other state of the art regression algorithms [5], even though
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Figure 1: Experimental results on toy sinc data.

Table 2: Results over 100 random trials for the Boston Housing Data for ε =
0.1, 1.0, 2.0, ..., 10.0: mean squared errors and the standard deviation; MPDTε: fraction
of test points that are within ε of y and the standard deviation; predicted Ω: predicted
probability that the model is within ε of y and standard deviation.

ε 0.1 1.0 2.0 3.0 4.0 4.0 6.0 7.0 8.0 9.0 10.0
MSE 9.9 10.5 10.9 9.5 10.3 9.9 10.5 10.5 9.2 10.1 10.6
STD 5.9 9.5 8.6 5.9 8.1 8.0 8.5 8.1 5.3 6.9 7.6

MPDTε 0.05 0.33 0.58 0.76 0.84 0.89 0.93 0.95 0.97 0.97 0.98
STD 0.04 0.09 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.03 0.02
Ω 0.002 0.19 0.51 0.69 0.80 0.87 0.90 0.92 0.94 0.95 0.96

STD 0.0005 0.03 0.06 0.05 0.04 0.03 0.01 0.01 0.009 0.009 0.008

no attempt was made to optimize for σ. Second, as with the toy data, the errors are relatively
independent of ε. Finally, we note that the mean predicted Ω is lower than the measured
average MPTDε, thus validating the the MPMR algorithm does indeed predict an effective
lower bound on the probability that the regression model is within ε of the true regression
function.

4 Discussion and Conclusion

We formalize the regression problem as one of maximizing the minimum probability, Ω,
that the regression model is within ±ε of the true regression function. By estimating mean
and covariance matrix statistics of the regression data (and making no other assumptions
on the underlying true regression function distributions), the proposed minimax probability
machine regression (MPMR) algorithm obtains a direct estimate of Ω. Two theorems are
presented proving that, given perfect knowledge of the mean and covariance statistics of the
true regression function, the proposed MPMR algorithm directly computes the exact lower
probability bound Ω. We are unaware of any other nonlinear regression model formulation
that has this property.



Experimental results are given showing: 1) the regression models produced are competi-
tive with existing state of the art models; 2) the mean squared error on test data is relatively
independent of the choice of ε; and 3) estimating mean and covariance statistics directly
from the learning data gives accurate lower probability bound Ω estimates that the regres-
sion model is within ±ε of the true regression function - thus supporting our theoretical
results.

Future research will focus on a theoretical analysis of the conditions under which the ac-
curacy of the regression model is independent of ε. Also, we are analyzing the rate, as a
function of sample size, at which estimates of the lower probability bound Ω converge to
the true value. Finally, the proposed minimax probability machine regression framework
is a new formulation of the regression problem, and therefore its properties can only be
fully understood through extensive experimentation. We are currently applying MPMR to
a wide variety of regression problems and have made Matlab / C source code available
(http://www.cs.colorado.edu/∼grudic/software) for others to do the same.
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Appendix: Proofs of Theorems 1 and 2

Proof of Theorem 1:

Consider any point x = (x1, ..., xd) generated according to the distribution Λ. This point
will have a corresponding y (defined in (2)), and from (10), the probability that z+ε = (y+
ε, x1, ..., xd) will be classified correctly (as belonging to class u) by (6) is α. Furthermore,
the classification boundary occurs uniquely at the point where z = (ŷ, x1, ..., xd), where,
from the assumptions, ŷ is the unique solution to (12). Similarly, for the same point y,
the probability that z−ε = (y − ε, x1, ..., xd) will be classified correctly (as belonging
to class v) by (6) is also α, and the classifications boundary occurs uniquely at the point
where z = (ŷ, x1, ..., xd). Therefore, both z+ε = (y + ε, x1, ..., xd) and z−ε = (y −
ε, x1, ..., xd) are, with probability α, on the correct side of the regression surface, defined
by z = (ŷ, x1, ..., xd). Therefore, z+ε differs from z by at most +ε in the first dimension,
and z−ε differs from z by at most −ε in the first dimension. Thus, the minimum bound on
the probability that |y − ŷ| ≤ ε is α (defined in (10)), which has the same form as Ω. This
completes the proof.



Proof of Lemma 1:

[k̃u]i − [k̃v]i = 1
N

(
∑N

l=1 Kc(ul, zi)) − 1
N

(
∑N

l=1 Kc(vl, zi)) =
1
N

∑N
l=1(yl + ε)y′

i + K(xl,xi) − ((yl − ε)y′
i + K(xl,xi)) = 1

N
N2εy′

i = 2εy′
i

Proof of Theorem 2:

Part 1: Plugging (14) into (12), we get:

0 =
2N
∑

i=1

γi [y′
iŷ + K (xi,x)] + bc

0 =
N
∑

i=1

γi [(yi + ε) ŷ + K (xi,x)] +
N
∑

i=1

γi+N [(yi − ε) ŷ + K (xi,x)] + bc

0 =
N
∑

i=1

{(γi + γi+N ) [yiŷ + K (xi,x)] + (γi − γi+N ) εŷ} + bc

When we solve analytically for ŷ, giving (5), the coefficients βi and the offset b have a

denominator that looks like: −
N
∑

i=1

[(γi + γi+N ) yi + (γi − γi+N ) ε] = −γTy′

Applying Lemma 1 and (7) we obtain: 1 = γT((̃ku) − k̃v) = γT2εy′ ⇔ −γTy′ = − 1
2ε

for the denominator of βi and b.

Part 2: The values zi are defined as: z1 = u1, ..., zN = uN , zN+1 = v1 = u1 −
(2ε, 0, · · · , 0)T , ..., z2N = vN = uN − (2ε, 0, · · · , 0)T . Since K̃u = Ku − 1N k̃u we have
the following term for a single matrix entry:

[K̃u]i,j = Kc(ui, zj) − 1
N

∑N
l=1 Kc(ul, zj) i = 1, .., N j = 1, ..., 2N

Similarly the matrix entries for K̃v look like:
[K̃v]i,j = Kc(vi, zj) − 1

N

∑N
l=1 Kc(vl, zj) i = 1, .., N j = 1, ..., 2N

We show that these entries are the same for all i and j:
[K̃u]i,j = Kc(vi + (2ε 0 · · · 0)

T
, zj) − 1

N

∑N
l=1 Kc(vl + (2ε 0 · · · 0)

T
, zj) =

Kc(vi, zj) + 2ε[zj ]1 − 1
N

(
∑N

l=1 Kc(vl, zj) + 2ε[zj ]1) =

Kc(vi, zj) + 2ε[zj ]1 − 1
N

∑N
l=1 Kc(vl, zj) − 1

N

∑N
l=1 2ε[zj ]1 =

Kc(vi, zj) + 2ε[zj ]1 − 1
N

∑N
l=1 Kc(vl, zj) − 1

N
N2ε[zj ]1 =

Kc(vi, zj) − 1
N

∑N
l=1 Kc(vl, zj) = [K̃v]i,j

This completes the proof of Part 2.

Part 3: From Part 2 we know that K̃u = K̃v. Therefore, the minimization problem
(7) collapses to min‖K̃uγ‖2

2 with respect to γ (the N is constant and can be removed).
Formulating this minimization with the use of the orthogonal matrix F and an initial vector
γo this becomes (see [1]): min‖K̃u(γo + Ft)‖2

2 with respect to t ∈ <2N−1. We set
h(t) = ‖K̃u(γ + Ft)‖2

2. Therefore in order to find the minimum we must solve 2N − 1
linear equations: 0 = d

dti

h(t) i = 1, ..., 2N − 1. This completes the proof of Part 3.


