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Abstract 

If the cortex uses spike timing to compute, the timing of the spikes 
must be robust to perturbations. Based on a recent framework that 
provides a simple criterion to determine whether a spike sequence 
produced by a generic network is sensitive to initial conditions, and 
numerical simulations of a variety of network architectures, we 
argue within the limits set by our model of the neuron, that it is 
unlikely that precise sequences of spike timings are used for 
computation under conditions typically found in the cortex. 

1 Introduction 

Several models of neural computation use the precise timing of spikes to encode 
information. For example, Abeles et al. have proposed synchronous volleys of 
spikes (synfire chains) as a candidate for representing information in the cortex [1]. 
More recently, Maass has demonstrated how spike timing in general, not merely 
synfire chains, can be utilized to perform nonlinear computations [6]. 

For any of these schemes to function, the timing of the spikes must be robust to 
small perturbations; i.e., small perturbations of spike timing should not result in 
successively larger fluctuations in the timing of subsequent spikes. To use the 
terminology of dynamical systems theory, the network must not exhibit sensitivity 
to initial conditions. Indeed, reliable computation would simply be impossible if the 
timing of spikes is sensitive to the slightest source of noise, such as synaptic release 
variability, or thermal fluctuations in the opening and closing of ionic channels. 

Diesmann et al. have recently examined this issue for the particular case of synfire 
chains in feed-forward networks [4]. They have demonstrated that the propagation 
of a synfire chain over several layers of integrate-and-fire neurons can be robust to 2 
Hz of random background activity and to a small amount of noise in the spike 
timings. The question we investigate here is whether this result generalizes to the 
propagation of any arbitrary spatiotemporal configuration of spikes through a 
recurrent network of neurons. This question is central to any theory of computation 
in cortical networks using spike timing since it is well known that the connectivity 
between neurons in the cortex is highly recurrent. Although there have been earlier 
attempts at resolving like issues, the applicability of the results are limited by the 
model of the neuron [8] or the pattern of propagated spikes [5] considered. 



Before we can address this question in a principled manner, however, we must 
confront a couple of confounding issues. First stands the problem of stationarity. As 
is well known, Lyapunov characteristic exponents of trajectories are limit quantities 
that are guaranteed to exist (almost surely) in classical dynamical systems that are 
stationary. In systems such as the cortex that receive a constant barrage of transient 
inputs, it is questionable whether such a concept bears much relevance. Fortunately, 
our simulations indicate that convergence or divergence of trajectories in cortical 
networks can occur very rapidly (within 200-300 msec). Assuming that external 
inputs do not change drastically over such short time scales, one can reasonably 
apply the results from analysis under stationary conditions to such systems. 

Second, the issues of how a network should be constructed so as to generate a 
particular spatiotemporal pattern of spikes as well as whether a given spatiotemporal 
pattern of spikes can be generated in principle, remain unresolved in the general 
setting. It might be argued that without such knowledge, any classification of spike 
patterns into sensitive and insensitive classes is inherently incomplete. However, as 
shall be demonstrated later, sensitivity to initial conditions can be inferred under 
relatively weak conditions. In addition, we shall present simulation results from a 
variety of network architectures to support our general conclusions. 

The remainder of the paper is organized as follows. In section 2, we briefly review 
relevant aspects of the dynamical system corresponding to a recurrent neuronal 
network as formulated in [2] and formally define "sensitivity to initial conditions". 
In Section 3, we present simulation results from a variety of network architectures. 
In Section 4, we interpret these results formally which in turn lead us to an 
additional set of experiments. In Section 5, we draw conclusions regarding the issue 
of computation using spike timing in cortical networks based on these results. 

2 Spike dynamics 

A detailed exposition of an abstract dynamical system that models recurrent systems 
of biological neurons was presented in [2]. Here, we recount those aspects of the 
system that are relevant to the present discussion. Based on the intrinsic nature of 
the processes involved in the generation of postsynaptic potentials (PSP's) and of 
those involved in the generation of action potentials (spikes), it was shown that the 
state of a system of neurons can be specified by enumerating the temporal positions 
of all spikes generated in the system over a bounded past. For example, in Figure 1, 
the present state of the system is described by the positions of the spikes (solid 
lines) in the shaded region at t= 0 and the state of the system at a future time T is 
specified by the positions of the spikes (solid lines) in the shaded region at t= T. 
Each internal neuron i in the system is assigned a membrane potential function PJ) 
that takes as its input the present state and generates the instantaneous potential at 
the soma of neuron i. It is the particular instantiation of the set of functions PJ) that 
determines the nature of the neurons as well as their connectivity in the network. 

Consider now the network in Figure 1 initialized at the particular state described by 
the shaded region at t= O. Whenever the integration of the PSP's from all presynaptic 
spikes to a neuron combined with the hyperpolarizing effects of its own spikes (the 
precise nature of the union specified by PJ)) brings its membrane potential above 
threshold, the neuron emits a new spike. If the spikes in the shaded region at t= 0 
were perturbed in time ( dotted lines) , this would result in a perturbation on the new 
spike. The size of the new perturbation would depend upon the positions of the 
spikes in the shaded region, the nature of PJ) , and the sizes of the old 
perturbations. This scenario would in turn repeat to produce further perturbations on 
future spikes. In essence, any initial set of perturbations would propagate from spike 
to spike to produce a set of perturbations at any arbitrary future time t= T. 
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Figure 1: Schematic diagram of the spike dynamics of a system of neurons. 
Input neurons are colored gray and internal neurons black. Spikes are shown 
in solid lines and their corresponding perturbations in dotted lines. Note that 
spikes generated by the input neurons are not perturbed. Gray boxes 
demarcate a bounded past history starting at time t. The temporal position of 
all spikes in the boxes specify the state of the system at times t= 0 and t= T. 

It is of considerable importance to note at this juncture that while the specification 
of the network architecture and the synaptic weights determine the precise temporal 
sequence of spikes generated by the network, the relative size of successive 
perturbations are determined by the temporal positions of the spikes in successive 
state descriptions at the instant of the generation of each new spike. If it can be 
demonstrated that there are particular classes of state descriptions that lead to large 
relative perturbations, one can deduce the qualitative aspects of the dynamics of a 
network armed with only a general description of its architecture. A formal analysis 
in Section 4 will bring to light such a classification. 

Let column vectors ~ and y denote , respectively, perturbations on the spikes of 
internal neurons at times t=O and t=T. We pad each vector with as many zeroes as 
there are input spikes in the respective state descriptions. Let AT denote the matrix 
such that y = Ar~. Let Band C be the matrices as described in [3] that discard the 
rigid translational components from the final and initial perturbations. Then, the 
dynamics of the system is sensitive to initial conditions if lim T_ oo liB * AT * ell = 00 . 

If instead, limT_ oo liB * AT * ell = 0 , the dynamics is insensitive to initial conditions. 

A few comments are in order here. First, our interest lies not in the precise values of 
the Lyapunov characteristic exponents of trajectories (where they exist), but in 
whether the largest exponent is greater than or less than zero. Furthermore, the class 
of trajectories that satisfy either of the above criteria is larger (although not 
necessarily in measure) than the class of trajectories that have definite exponents. 
Second, input spikes are free parameters that have to be constrained in some manner 
if the above criteria are to be well-defined. By the same token, we do not consider 
the effects that perturbations of input spikes have on the dynamics of the system. 

3 Simulations and results 

A typical column in the cortex contains on the order of 105 neurons, approximately 
80% of which are excitatory and the rest inhibitory. Each neuron receives around 
104 synapses, approximately half of which are from neurons in the same column and 
the rest from excitatory neurons in other columns and the thalamus. These estimates 
indicate that even at background rates as low as 0.1 Hz, a column generates on 
average 10 spikes every millisecond. Since perturbations are propagated from spikes 



to generated spikes, divergence and/or convergence of spike trajectories could occur 
extremely rapidly. We test this hypothesis in this section through model simulations. 

All experiments reported here were conducted on a system containing 1000 internal 
neurons (set to model a cortical column) and 800 excitatory input neurons (set to 
model the input into the column). Of the 1000 internal neurons, 80% were chosen to 
be excitatory and the rest inhibitory. Each internal neuron received 100 synapses 
from other (internal as well as input) neurons in the system. The input neurons were 
set to generate random uncorrelated Poisson spike trains at a fixed rate of 5 Hz. 

The membrane potential function P/) for each internal neuron was modeled as the 
sum of excitatory and inhibitory PSP ' s triggered by the arrival of spikes at synapses, 
and afterhyperpolarization potentials triggered by the spikes generated by the 
neuron. PSP ' s were modeled using the function "'.Ji e-"'i e-Y, where v, E and Twere set 

v t 

to mimic four kinds of synapses, NMDA, AMP A, GABAA , and GABAB . OJ was set 
for excitatory and inhibitory synapses so as to generate a mean spike rate of 5 Hz by 
excitatory and 15 Hz by inhibitory internal neurons. The parameters were then held 
constant over the entire system leaving the network connectivity and axonal delays 
as the only free parameters. After the generation of a spike, an absolute refractory 
period of 1 msec was introduced during which the neuron was prohibited from 
generating a spike. There was no voltage reset. However, each spike triggered an 
afterhyperpolarization potential with a decay constant of 30 msec that led to a 
relative refractory period. Simulations were performed in 0.1 msec time steps and 
the time bound on the state description, as related in Section 2, was set at 200 msec. 

The issue of correlated inputs was addressed by simulating networks of disparate 
architectures. On the one extreme was an ordered two layer ring network with input 
neurons forming the lower layer and internal neurons (with the inhibitory neurons 
placed evenly among the excitatory neurons) forming the upper layer. Each internal 
neuron received inputs from a sector of internal and input neurons that was centered 
on that neuron. As a result, any two neighboring internal neurons shared 96 of their 
100 inputs (albeit with different axonal delays of 0.5-1.1 msec). This had the effect 
of output spike trains from neighboring internal neurons being highly correlated, 
with sectors of internal neurons producing synchronized bursts of spikes. On the 
other extreme was a network where each internal neuron received inputs from 100 
randomly chosen neurons from the entire population of internal and input neurons. 
Several other networks where neighboring internal neurons shared an intermediate 
percentage of their inputs were also simulated. Here, we present results from the 
two extreme architectures. The results from all the other networks were similar. 

Figure 2(a) displays sample output spike trains from 100 neighboring internal 
neurons over a period of 450 msec for both architectures. In the first set of 
experiments, pairs of identical systems driven by identical inputs and initialized at 
identical states except for one randomly chosen spike that was perturbed by 1 msec, 
were simulated. In all cases, the spike trajectories diverged very rapidly. Figure 2(b) 
presents spike trains generated by the same 100 neighboring internal neurons from 
the two simulations from 200 to 400 msec after initialization, for both architectures. 

To further explore the sensitivity of the spike trajectories, we partitioned each 
trajectory into segments of 500 spike generations each. For each such segment, we 
then extracted the spectral norm liB * AT * ell after every 100 spike generations. 

Figure 2( c) presents the outcome of this analysis for both architectures. Although 
successive segments of 500 spike generations were found to be quite variable in 
their absolute sensitivity, each such segment was nevertheless found to be sensitive. 
We also simulated several other architectures (results not shown), such as systems 
with fixed axonal delays and ones with bursty behavior, with similar outcomes. 
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Figure 2: (a) Spike trains of 100 neighboring neurons for 450 msec from the 
ring and the random networks respectively. (b) Spike trains from the same 
100 neighboring neurons (above and below) 200 msec after initialization. 
Note that the trains have already diverged at 200 msec. (c) Spectral norm of 
sensitivity matrices of 14 successive segments of 500 spike generations 
each, computed in steps of 100 spike generations for both architectures. 



4 Analysis and further simulations 

The reasons behind the divergence of the spike trajectories presented in Section 3 
can be found by considering how perturbations are propagated from the set of spikes 
in the current state description to a newly generated spike. As shown in [3] , the 
perturbation in the new spike can be represented as a weighted sum of the 
perturbations of those spikes in the state description that contribute to the generation 
of the new spike. The weight assigned to a spike Xi is proportional to the slope of the 
PSP or that of the hyperpolarization triggered by that spike (apo/aXi in the general 
case), at the instant of the generation of the new spike. Intuitively, the larger the 
slope is, the greater is the effect that a perturbation of that spike can have on the 
total potential at the soma, and hence, the larger is the perturbation on the new 
spike. The proportionality constant is set so that the weights sum to 1. This 
constraint is reflected in the fact that if all spikes were to be perturbed by a fixed 
quantity, this would amount to a rigid displacement in time causing the new spike to 
be perturbed by the same quantity. We denote the slopes by Pi, and the weights by 
ai. Then, a = p.I" n p., where j ranges over all contributing spikes. 

i I ~ j"", l J 

We now assume that at the generation of each new spike, the p,'s are drawn 
independently from a stationary distribution (for both internal and input contributing 
spikes), and that the ratio of the number of internal to the total (internal plus input) 
spikes in any state description remains close to a fixed quantity f-l at all times. Note 
that this amounts to an assumed probability distribution on the likelihood of 
particular spike trajectories rather than one on possible network architectures and 
synaptic weights. The iterative construction of the matrix AT, based on these 
conditions, was described in detail in [3]. It was also shown that the statistic 
\I;I~l ai

2 ) plays a central role in the determination of the sensitivity of the resultant 

spike trajectories. In a minor modification to the analysis in [3], we assume that AT 
represents the full perturbation (internal plus input) at each step of the process. 
While this merely entails the introduction of additional rows with zero entries to 
account for input spikes in each state, this alters the effect that B has on liB * AT * ell 
in a way that allows for a simpler as well as bidirectional bound on the norm. Since 
the analysis is identical to that in [3] and does not introduce any new techniques , we 

only report the result. If \I;I~l ai
2 ) > (2 + ~(y") -1 (resp. \I;~ l ai

2 ) < ~ -I} then the 

spike trajectories are almost surely sensitive (resp. insensitive) to initial conditions. 
m denotes the number of internal spikes in the state description. 

If we make the liberal assumption that input spikes account for as much as half the 
total number of spikes in state descriptions, noting that m is a very large quantity 
(greater than 103 in all our simulations), the above constraint requires (Ian> 3 for 

spike trajectories to be almost surely sensitive to initial conditions. From our earlier 
simulations, we extracted the value of L a i

2 whenever a spike was generated, and 

computed the sample mean (I ai
2 ) over all spike generations. The mean was larger 

than 3 in all cases (it was 69.6 for the ring and 11.3 for the random network). 

The above criterion enables us to peer into the nature of the spike dynamics of real 
cortical columns, for although simulating an entire column remains intractable, a 
single neuron can be simulated under various input scenarios, and the resultant 
statistic applied to infer the nature of the spike dynamics of a cortical column most 
of whose neurons operate under those conditions. 



An examination of the mathematical nature of L: a i
2 reveals that its value rises as 

the size of the subset of p;'s that are negative grows larger. The criterion for 
sensitivity is therefore more likely to be met when a substantial portion of the 
excitatory PSP's are on their falling phase (and inhibitory PSP ' s on their rising 
phase) at the instant of the generation of each new spike. This corresponds to a case 
where the inputs into the neurons of a system are not strongly synchronized. 
Conversely, if spikes are generated soon after the arrival of a synchronized burst of 
spikes (all of whose excitatory PSP ' s are presumably on their rising phase), the 
criterion for sensitivity is less likely to be met. We simulated several combinations 
of the two input scenarios to identify cases where the corresponding spike 
trajectories in the system were not likely to be sensitive to initial conditions. 

We constructed a model pyramidal neuron with 10,000 synapses, 85% of which 
were chosen to be excitatory and the rest inhibitory. The threshold of the neuron 
was set at 15 mV above resting potential. PSP ' s were modeled using the function 
described earlier with values for the parameters set to fit the data reported in [7]. 
For excitatory PSP's the peak amplitudes ranged between 0.045 and 1.2 mV with 
the median around 0.15 mY, 10-90 rise times ranged from 0.75 to 3.35 msec and 
widths at half amplitude ranged from 8.15 to 18.5 msec. For inhibitory PSP's, the 
peak amplitudes were on average twice as large and the 10-90 rise times and widths 
at half amplitude were slightly larger. Whenever the neuron generated a new spike, 
the values of the p;'s were recorded and L: a } was computed. The mean (L: ai

2 ) 

was then computed over the set of all spike generations. In order to generate 
conservative estimates, samples with value above 104 were discarded (they 
comprised about 0.1% of the data). The datasets ranged in size from 3000 to 15,000. 

Three experiments simulating various levels of uncorrelated input/output activity 
were conducted. In particular, excitatory Poisson inputs at 2, 20 and 40 Hz were 
balanced by inhibitory Poisson inputs at 6.3, 63 and 124 Hz to generate output rates 
of approximately 2, 20 and 40 Hz, respectively. We confirmed that the output in all 
three cases was Poisson-like (CV=O.77, 0.74, and 0.89, respectively). The mean 
(L: ai

2 ) for the three experiments was 4.37 , 5.66, and 9.52 , respectively. 

Next, two sets of experiments simulating the arrival of regularly spaced synfire 
chains were conducted. In the first set the random background activity was set at 2 
Hz and in the second, at 20 Hz. The synfire chains comprised of spike volleys that 
arrived every 50 msec. Four experiments were conducted within each set: volleys 
were composed of either 100 or 200 spikes (producing jolts of around 10 and 20 mV 
respectively) that were either fully synchronized or were dispersed over a Gaussian 
distribution with a=1 msec. The mean (Lan for the experiments was as follows. 

At 2 Hz background activity, it was 0.49 (200 spikes/volley, synchronized), 0.60 
(200 spikes/volley, dispersed) , 2.46 (100 spikes/volley, synchronized), and 2.16 
(100 spikes/volley, dispersed). At 20 Hz background activity, it was 4.39 (200 
spikes/volley, synchronized), 8.32 (200 spikes/volley, dispersed) , 6.77 (100 
spikes/volley, synchronized), and 6.78 (l00 spikes/volley, dispersed). 

Finally, two sets of experiments simulating the arrival of randomly spaced synfire 
chains were conducted. In the first set the random background activity was set at 2 
Hz and in the second, at 20 Hz. The synfire chains comprised of a sequence of spike 
volleys that arrived randomly at a rate of 20 Hz. Two experiments were conducted 
within each set: volleys were composed of either 100 or 200 synchronized spikes. 
The mean (L ai

2 ) for the experiments was as follows. At 2 Hz background activity, 

it was 4.30 (200 spikes/volley) and 4.64 (100 spikes/volley). At 20 Hz background 
activity, it was 5.24 (200 spikes/volley) and 6.28 (l00 spikes/volley). 



5 Conclusion 

As was demonstrated in Section 3, senslllvlty to initial conditions transcends 
unstructured connectivity in systems of spiking neurons. Indeed, our simulations 
indicate that sensitivity is more the rule than the exception in systems modeling 
cortical networks operating at low to moderate levels of activity. Since perturbations 
are propagated from spike to spike, trajectories that are sensitive can diverge very 
rapidly in systems that generate a large number of spikes within a short period of 
time. Sensitivity therefore is an issue, even for schemes based on precise sequences 
of spike timing with computation occurring over short (hundreds of msec) intervals. 

Within the limits set by our model of the neuron, we have found that spike 
trajectories are likely to be sensitive to initial conditions in all scenarios except 
where large (100-200) synchronized bursts of spikes occur in the presence of sparse 
background activity (2 Hz) with sufficient but not too large an interval between 
successive bursts (50 msec). This severely restricts the possible use of precise spike 
sequences for reliable computation in cortical networks for at least two reasons. 
First, un synchronized activity can rise well above 2 Hz in the cortex, and second, 
the highly constrained nature of this dynamics would show in in vivo recordings. 

Although cortical neurons can have vastly more complex responses than that 
modeled in this paper, our conclusions are based largely on the simplicity and the 
generality of the constraints identified (the analysis assumes a general membrane 
potential function PO). Although a more refined model of the cortical neuron could 
lead to different values of the statistic computed, we believe that the results are 
unlikely to cross the noted bounds and therefore change our overall conclusions. 

We are however not arguing that computation with spike timing is impossible in 
general. There are neural structures, such as the nucleus laminaris in the barn owl 
and the electro sensory array in the electric fish , which have been shown to perform 
exquisitely precise computations using spike timing. Interestingly, these structures 
have very specialized neurons and network architectures. 

To conclude, computation using precise spike sequences does not appear to be likely 
in the cortex in the presence of Poisson-like activity at levels typically found there. 
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