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Abstract 

The standard representation of text documents as bags of words 
suffers from well known limitations, mostly due to its inability to 
exploit semantic similarity between terms. Attempts to incorpo­
rate some notion of term similarity include latent semantic index­
ing [8], the use of semantic networks [9], and probabilistic methods 
[5]. In this paper we propose two methods for inferring such sim­
ilarity from a corpus. The first one defines word-similarity based 
on document-similarity and viceversa, giving rise to a system of 
equations whose equilibrium point we use to obtain a semantic 
similarity measure. The second method models semantic relations 
by means of a diffusion process on a graph defined by lexicon and 
co-occurrence information. Both approaches produce valid kernel 
functions parametrised by a real number. The paper shows how 
the alignment measure can be used to successfully perform model 
selection over this parameter. Combined with the use of support 
vector machines we obtain positive results. 

1 Introduction 

Kernel-based algorithms exploit the information encoded in the inner-products be­
tween all pairs of data items (see for example [1]). This matches very naturally the 
standard representation used in text retrieval, known as the 'vector space model', 
where the similarity of two documents is given by the inner product between high 
dimensional vectors indexed by all the terms present in the corpus. The combina­
tion of these two methods, pioneered by [6], and successively explored by several 
others, produces powerful methods for text categorization. However, such an ap­
proach suffers from well known limitations, mostly due to its inability to exploit 
semantic similarity between terms: documents sharing terms that are different but 
semantically related will be considered as unrelated. A number of attempts have 
been made to incorporate semantic knowledge into the vector space representation. 
Semantic networks have been considered [9], whilst others use co-occurrence analy­
sis where a semantic relation is assumed between terms whose occurrence patterns 
in the documents of the corpus are correlated [3]. Such methods are also limited in 
their flexibility, and the question of how to infer semantic relations between terms 
or documents from a corpus remains an open issue. In this paper we propose two 
methods to model such relations in an unsupervised way. The structure of the paper 
is as follows. Section 2 provides an introduction to how semantic similarity can be 



introduced into the vector space model. Section 3 derives a parametrised class of 
semantic proximity matrices from a recursive definition of similarity of terms and 
documents. A further parametrised class of kernels based on alternative similarity 
measures inspired by considering diffusion on a weighted graph of documents is 
given in Section 4. In Section 5 we show how the recently introduced alignment 
measure [2] can be used to perform model selection over the classes of kernels we 
have defined. Positive experimental results with the methods are reported in Section 
5 before we draw conclusions in Section 6. 

2 Representing Semantic Proximity 

Kernel based methods are an attractive choice for inferring relations from textual 
data since they enable us to work in a document-by-document setting rather than 
in a term-by-term one [6]. In the vector space model, a document is represented 
by a vector indexed by the terms of the corpus. Hence, the vector will typically 
be sparse with non-zero entries for those terms occurring in the document. Two 
documents that use semantically related but distinct words will therefore show no 
similarity. The aim of a semantic proximity matrix [3] is to correct for this by 
indicating the strength of the relationship between terms that even though distinct 
are semantically related. 

The semantic proximity matrix P is indexed by pairs of terms a and b, with the 
entry Pab = Pba giving the strength of their semantic similarity. If the vectors 
corresponding to two documents are d i , d j , their inner product is now evaluated 
through the kernel 

k(di , dj ) = d~Pdj, 

where x' denotes the transpose of the vector or matrix x. The symmetry of P 
ensures that the kernel is symmetric. We must also require that P is positive semi­
definite in order to satisfy Mercer's conditions. In this case we can decompose 
P = R' R for some matrix R, so that we can view the semantic similarity as a 
projection into a semantic space 

¢: d f--t Rd, since k(di,dj ) = d~Pdj = (Rd i , Rdj }. 

The purpose of this paper is to infer (or refine) the similarity measure between 
examples by taking into account higher order correlations, thereby performing un­
supervised learning of the proximity matrix from a given corpus. We will propose 
two methods based on two different observations. 

The first method exploits the fact that the standard representation of text docu­
ments as bags of words gives rise to an interesting duality: while documents can be 
seen as bags of words, simultaneously terms can be viewed as bags of documents 
- the documents that contain them. In such a model, two documents that have 
highly correlated term-vectors are considered as having similar content. Similarly, 
two terms that have a correlated document-vector will have a semantic relation. 
This is of course only a first order approximation since the knock-on effect of the 
two similarities on each other needs to be considered. We show that it is possible 
to define term-similarity based on document-similarity, and vice versa, to obtain 
a system of equations that can be solved in order to obtain a semantic proximity 
matrix P. 

The second method exploits the representation of a lexicon (the set of all words in 
a given corpus) as a graph, where the nodes are indexed by words and where co­
occurrence is used to establish links between nodes. Such a representation has been 
studied recently giving rise to a number of topological properties [4]. We consider 



the idea that higher order correlations between terms can affect their semantic 
relations as a diffusion process on such a graph. Although there can be exponentially 
many paths connecting two given nodes in the graph, the use of diffusion kernels [7] 
enables us to obtain the level of semantic relation between any two nodes efficiently, 
so inferring the semantic proximity matrix from data. 

3 Equilibrium Equations for Semantic Similarity 

In this section we consider the first of the two methods outlined in the previous 
section. Here the aim is to create recursive equations for the relations between 
documents and between terms. 

Let X be the feature example (term/document in the case of text data) matrix 
in a possibly kernel-defined feature space, so that X' X gives the kernel matrix K 
and X X' gives the correlations between different features over the training set. 
We denote this latter matrix with G. Consider the similarity matrices defined 
recursively by 

K >"X'GX+K and G=>..X'KX+G (1) 

We can interpret this as augmenting the similarity given by K through indirect 
similarities measured by G and vice versa. The factor >.. < IIKII-1 ensures that the 
longer range effects decay exponentially. Our first result characterizes the solution 
of the above recurrences. 

Proposition 1 Provided>" < IIKII-1 = IIGII-1 , the kernels K and G that solve the 
recurrences (1) are given by 

K K(f - >"K)-l and G = G(I - >"G)-l 

Proof: First observe that 

K(I - >"K) - l 
1 1 

K(I - >"K) - l - -(I - >"K) - l + -(f - >"K) - l 
>.. >.. 

1 1 1 1 --(I - >..K)(f - >"K) - + -(I - >"K) -
>.. >.. 

1 1 1 -(I - >"K) - --f 
>.. >.. 

Now if we substitute the second recurrence into the first we obtain 

K >..2X'XKX'X+>"X'XX'X+K 
>..2 K(K(I - >..K) - l)K + >..K2 + K 

>..2 K( ~(I - >"K)-l - ~I)K + >..K2 + K 

>"K(I - >"K)-l K + K(I - >..K)-l(f - >"K) 

K(I - >"K) - l 

showing that the expression does indeed satisfy the recurrence. Clearly, by the 
symmetry of the definition the expression for G also satisfies the recurrence. _ 

In view of the form of the solution we introduce the following definition: 

Definition 2 von Neumann Kernel Given a kernel K the derived kernel K(>..) = 
K(f - >"K)-l will be referred to as the von Neumann kernel. 



Note that we can view K(>\) as a kernel based on the semantic proximity matrix 
P = >..a + I since 

X'PX = X'(>..a + I)X = >..x'ax + K = K(>"). 

Hence, the solution a defines a refined similarity between terms/features. In the 
next section, we will consider the second method of introducing semantic similarity 
derived from viewing the terms and documents as vertices of a weighted graph. 

4 Semantic Similarity as a Diffusion Process 

Graph like structures within data occur frequently in many diverse settings. In 
the case of language, the topological structure of a lexicon graph has recently been 
analyzed [4]. Such a graph has nodes indexed by all the terms in the corpus, and 
the edges are given by the co-occurrence between terms in documents of the corpus. 
Although terms that are connected are likely to have related meaning, terms with 
a higher degree of separation would not be considered as being related. 

A diffusion process on the graph can also be considered as a model of semantic 
relations existing between indirectly connected terms. Although the number of 
possible paths between any two given nodes can grow exponentially, results from 
spectral graph theory have been recently used by [7] to show that it is possible to 
compute the similarity between any two given nodes efficiently without examining 
all possible paths. It is also possible to show that the similarity measure obtained 
in this way is a valid kernel function. The exponentiation operation used in the 
definition, naturally yields the Mercer conditions required for valid kernel functions. 

An alternative insight into semantic similarity, to that presented in section 2, is 
afforded if we multiply out the expression for K(>..) , K(>..) = K(I - >"K)-l = 
L:~l >..t-l Kt. The entries in the matrix Kt are given by 

t-1 

Kfj = 2..= II KUtUt+l' 
U E {1, ... ,~}t £=1 

U1 = i, Ut = j 
that is the sum of the products of the weights over all paths of length t that start 
at vertex i and finish at vertex j in the weighted graph on the examples. If we 
view the connection strengths as channel capacities, the entry Klj can be seen to 
measure the sum over all routes of the products of the capacities. If the entries 
satisfy that they are all positive and for each vertex the sum of the connections 
is 1, we can view the entry as the probability that a random walk beginning at 
vertex i is at vertex j after t steps. It is for these reasons that the kernels defined 
using these combinations of powers of the kernel matrix have been termed diffusion 
kernels [7]. A similar equation holds for Gt. Hence, examples that both lie in a 
cluster of similar examples become more strongly related, and similar features that 
occur in a cluster of related features are drawn together in the semantic proximity 
matrix P. We should stress that the emphasis of this work is not in its diffusion 
connections, but its relation to semantic proximity. It is this link that motivates 
the alternative decay factors considered below. 

The kernel K combines these indirect link kernels with an exponentially decaying 
weight. This suggests an alternative weighting scheme that shows faster decay for 
increasing path length, 

_ 00 >..tKt 
K(>..) = K 2..= -, = K exp(>..K) 

t. 
t=1 



The next proposition gives the semantic proximity matrix corresponding to K(>"') . 

Proposition 3 Let K(>"') = K exp(>...K). Then K(>"') corresponds to a semantic 
proximity matrix exp(>"'G). 

Proof: Let X = UI;V' be the singular value decomposition of X, so that K = 
VAV' is the eigenvalue decomposition of K, where A = I;/I;. We can write K as 

K VAexp(>...A)V' = XIUI; - lAexp(>...A)I; - lUIX 

= XIU exp(>"'A)U' X = Xl exp(>"'G)X, as required. _ 

The above leads to the definition of the second kernel that we consider. 

Definition 4 Given a kernel K the derived kernels K(>"') = K exp(>...K) will be 
referred to as the exponential kernels. 

5 Experimental Methods 

In the previous sections we have introduced two new kernel adaptations, in both 
cases parameterized by a positive real parameter >.... In order to apply these kernels 
on real text data, we need to develop a method of choosing the parameter >.... Of 
course one possibility would be just to use cross-validation as considered by [7]. 
Rather than adopt this rather expensive methodology we will use a quantitative 
measure of agreement between the diffusion kernels and the learning task known as 
alignment, which measures the degree of agreement between a kernel and target [2]. 

Definition 5 Alignment The (empirical) alignment of a kernel kl with a kernel 
k2 with respect to the sample S is the quantity 

A(S,k1 ,k2 ) = (K1 ,K2 )F , 

y!(K1 ,K1 )F(K2,K2)F 

where Ki is the kernel matrix for the sample S using kernel ki . 

where we use the following definition of inner products between Gram matrices 
m 

(K1 ,K2)F = 2..= K 1 (Xi ,Xj)K2(Xi,X j ) (2) 
i,j=l 

corresponding to the Frobenius inner product. From a text categorization perspec­
tive this can also be viewed as the cosine of the angle between two bi-dimensional 
vectors Kl and K 2, representing the Gram matrices. If we consider K2 = yyl, where 
y is the vector of outputs (+1/-1) for the sample, then 

A(S K I) _ (K, yy/)F 
, , yy - y!(K K) ( I I) , F yy , yy F 

y'Ky 

mllKllF 
(3) 

The alignment has been shown to possess several convenient properties [2]. Most 
notably it can be efficiently computed before any training of the kernel machine 
takes place, and based only on training data information; and since it is sharply 
concentrated around its expected value, its empirical value is stable with respect to 
different splits of the data. 

We have developed a method for choosing>... to optimize the alignment of the re­
sulting matrix K(>...) or k(>...) to the target labels on the training set. This method 



follows similar results presented in [2], but here the parameterization is non-linear 
in A so that we cannot solve for the optimal value. We rather seek the optimal value 
using a line search over the range of possible values of A for the value at which the 
derivative of the alignment with respect to A is zero. The next two propositions 
will give equations that are satisfied at this point. 

Proposition 6 If A* is the solution of A* = argmax~A(S, K(A), yy') and Vi, Ai are 
the eigenvector/eigenvalue pairs of the kernel matrix K then 

m m m m 

L Ai exp(A* Ai)(Vi, y)2 L AJ exp(2A* Ai) 
i=l i=l i = l i=l 

Proof: First observe that K(A) = V MV' = 2:~1 J.tiViV~, where Mii = J.ti(A) 
Ai exp(Ui). We can express the alignment of K(A) as 

A(S, K(A), yy') 
2:~1 J.ti(A)(Vi , y)2 

mJ2:~l J.ti(A)2 

The function is a differentiable function of A and so at its maximal value the deriva­
tive will be zero. Taking the derivative of this expression and setting it equal to 
zero gives the condition in the proposition statement. _ 

Proposition 7 If A* is the solution of A* = argmaxAE(O,IIKII-,)A(S, K(A), yy'), and 
Vi, Ai are the eigenvector eigenvalue pairs of the kernel matrix K then 

~ 1 ~ (Vi,y)2(2A*Ai -1) 
6 (A*(l- VAi))2 6 (A*(l- A*Ai))2 

~ (Vi,y)2 ~ 2A*Ai -1 
6 V(l- A*Ai) 6 (V(l- A*Ai))3 

Proof: The proof is identical to that of Proposition 6 except that Mii = J.ti(A) = 
(l - Ai>.r' 

A .-

Definition 8 Line Search Optimization of the alignment can take place by using 
a line search of the values of A to find a maximum point of the alignment by seeking 
points at which the equations given in Proposition 6 and 7 hold. 

5.1 Results 

To demonstrate the performance of the proposed algorithm for text data, the Med­
line1033 dataset commonly used in text processing [3] was used. This dataset con­
tains 1033 documents and 30 queries obtained from the national library of medicine. 
In this work we focus on query20. A Bag of Words kernel was used [6]. Stop words 
and punctuation were removed from the documents and the Porter stemmer was 
applied to the words. The terms in the documents were weighted according to a 
variant of the tfidf scheme. It is given by 10g(1 + tf) * log(m/ df), where tf repre­
sents the term frequency, df is used for the document frequency and m is the total 
number of documents. A support vector classifier (SVC) was used to assess the per­
formance of the derived kernels on the Medline dataset. A 10-fold cross validation 
procedure was used to find the optimal value for the capacity control parameter 
'C' . Having selected the optimal 'C' parameter, the SVC was re-trained ten times 
using ten random training and test dataset splits. Error results for the different 
algorithms are presented together with F1 values. The F1 measure is a popular 
statistic used in the information retrieval community for comparing performance of 



TRAIN ALIGN SVC ERROR F1 A 
K80 0.851 {0.012} 0.017 {0.005} 0.795 {0.060} 0.197 ~0.004) 

B80 0.423 (0 .007) 0.022 (0.007) 0.256 (0.351) 

K50 0.863 {0.025} 0.018 {0.006} 0.783 {0.074} 0.185 ~0.008) 

B50 0.390 (0.009) 0.024 (0.004) 0.456 (0 .265) 
K 20 0.867 {0.029} 0.019 {0.004) 0.731 {0.089} 0.147 ~0.04) 
B 20 0.325 (0.009) 0.030 (0.005) 0.349 (0 .209) 

Table 1: Medline dataset - Mean and associated standard deviation alignment, F1 
and sve error values for a sve trained using the Bag of Words kernel (B) and the 
exponential kernel (K). The index represents the percentage of training points. 

TRAIN ALIGN SVC ERROR F1 A 

K80 0.758 (0.015) 0.017 (0.004) 0.765 (0.020) 0.032 (0 .001) 

B80 0.423(0.007) 0.022 (0.007) 0.256 (0.351) 

K50 0.766 (0.025) 0.018 (0.005) 0.701 (0.066) 0.039 (0.008) 

B50 0.390 (0 .009) 0.024 (0.004) 0.456 (0.265) 

K 20 0.728 (0.012) 0.028 (0.004) 0.376 (0.089) 0.029 (0 .07) 
B 20 0.325 (0.009) 0.030 (0.005) 0.349 (0.209) 

Table 2: Medline dataset - Mean and associated standard deviation alignment, F1 
and sve error values for a sve trained using the Bag of Words kernel (B) and the 
von Neumann (K). The index represents the percentage of training points. 

algorithms typically on uneven data. F1 can be computed using F1 = ~~~, where 

P represents precision i.e. a measure of the proportion of selected items that the 
system classified correctly, and R represents recall i.e. the proportion of the target 
items that the system selected. 

Applying the line search procedure to find the optimal value of A for the diffusion 
kernels. All of the results are averaged over 10 random splits with the standard 
deviation given in brackets. Table 1 shows the results of using the Bag of Words 
kernel matrix (B) and the exponential kernel matrix (K). Table 2 presents the results 
of using the von Neumann kernel matrix (K) together with the Bag of Words kernel 
matrix for different sizes of the training data. The index represents the percentage 
of training points. The first column of both table 1 and 2 shows the alignments of 
the Gram matrices to the rank 1 labels matrix for different sizes of training data. 

In both cases the results presented indicate that the alignment of the diffusion 
kernels to the labels is greater than that of the Bag of Words kernel matrix by 
more than the sum of the standard deviations across all sizes of training data. The 
second column of the tables represents the support vector classifier (SVe) error 
obtained using the diffusion Gram matrices and the Bag of Words Gram matrix. 
The sve error for the diffusion kernels shows a decrease with increasing alignment 
value. F1 values are also shown and in all instances show an improvement for the 
diffusion kernel matrices. An interesting observation can be made regarding the F1 
value for the von Neumann kernel matrix trained using 20% training data (K20). 
Despite an increase in alignment value and reduction of sve error the F1 value 
does not increase as much as that for the exponential kernel trained using the same 
proportion of the data K 20 . This observation implies that the diffusion kernel needs 



more data to be effective. This will be investigated in future work. 

6 Conclusions 

We have proposed and compared two different methods to model the notion of se­
mantic similarity between documents, by implicitly defining a proximity matrix P 
in a way that exploits high order correlations between terms. The two methods 
differ in the way the matrix is constructed. In one view, we propose a recursive def­
inition of document similarity that depends on term similarity and vice versa. By 
solving the resulting system of kernel equations, we effectively learn the parameters 
of the model (P), and construct a kernel function for use in kernel based learning 
methods. In the other approach, we model semantic relations as a diffusion pro­
cess in a graph whose nodes are the documents and edges incorporate first-order 
similarity. Diffusion efficiently takes into account all possible paths connecting two 
nodes, and propagates the 'similarity' between two remote documents that share 
'similar terms'. The kernel resulting from this model is known in the literature 
as the 'diffusion kernel'. We have experimentally demonstrated the validity of the 
approach on text data using a novel approach to set the adjustable parameter ..\ in 
the kernels by optimising their 'alignment' to the target on the training set. For 
the dataset partitions substantial improvements in performance over the traditional 
Bag of Words kernel matrix were obtained using the diffusion kernels and the line 
search method. Despite this success, for large imbalanced datasets such as those en­
countered in text classification tasks the computational complexity of constructing 
the diffusion kernels may become prohibitive. Faster kernel construction methods 
are being investigated for this regime. 
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