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Abstract 

In this paper we present a new algorithm suitable for matching discrete 
objects such as strings and trees in linear time, thus obviating dynarrtic 
programming with quadratic time complexity. Furthermore, prediction 
cost in many cases can be reduced to linear cost in the length of the se­
quence to be classified, regardless of the number of support vectors. This 
improvement on the currently available algorithms makes string kernels 
a viable alternative for the practitioner. 

1 Introduction 

Many problems in machine learning require the classifier to work with a set of discrete ex­
amples. Common examples include biological sequence analysis where data is represented 
as strings [4] and Natural Language Processing (NLP) where the data is in the form a parse 
tree [3]. In order to apply kernel methods one defines a measure of similarity between 
discrete structures via a feature map ¢ : X ----+ Jek. 
Here X is the set of discrete structures (eg. the set of all parse trees of a language) and JeK 
is a Hilbert space. Furthermore, dot products then lead to kernels 

k(x, x') = (¢(x ), ¢(X') ) (1) 

where x, x ' E X. The success of a kernel method employing k depends both on the faithful 
representation of discrete data and an efficient means of computing k. 
This paper presents a means of computing kernels on strings [15, 7, 12] and trees [3] in 
linear time in the size of the arguments, regardless of the weighting that is associated with 
any of the terms, plus linear time complexity for prediction, regardless of the number of 
support vectors. This is a significant improvement, since the so-far fastest methods [8, 3] 
rely on dynarrtic programming which incurs a quadratic cost in the length of the argument. 
Note that the method we present here is far more general than strings and trees, and it can 
be applied to finite state machines, formal languages, automata, etc. to define new kernels 
[14]. However for the scope of the current paper we Iirrtit ourselves to a fast means of 
computing extensions of the kernels of [15, 3, 12]. 
In a nutshell our idea works as follows: assume we have a kernel k(x, x') 
I: iE I ¢i (x )¢i (x') , where the index set I may be large, yet the number of nonzero en­
tries is small in comparison to III- Then an efficient way of computing k is to sort the set 
of nonzero entries ¢(x) and ¢(X') beforehand and count only matching non-zeros. This 
is similar to the dot-product of sparse vectors in numerical mathematics. As long as the 
sorting is done in an intelligent manner, the cost of computing k is linear in the sum of 
non-zeros entries combined. In order to use this idea for matching strings (which have a 



quadratically increasing number of substrings) and trees (which can be transformed into 
strings) efficient sorting is realized by the compression of the set of all substrings into a 
suffix tree. Moreover, dictionary keeping allows us to use arbitrary weightings for each of 
the substrings and still compute the kernels in linear time. 

2 String Kernels 

We begin by introducing some notation. Let A be a finite set which we call the alphabet. 
The elements of A are characters. Let $ be a sentinel character such that $ tf. A. Any 
x E A k for k = 0, 1, 2 ... is called a string. The empty string is denoted by E and A * 
represents the set of all non empty strings defined over the alphabet A. 
In the following we will use s , t , u , v, w, x, y, z E A * to denote strings and a, b, c E A to 
denote characters. Ixl denotes the length of x , uv E A * the concatenation of two strings 
u , v and au the concatenation of a character and a string. We use xli : j] with 1 ::; i ::; j ::; 
Ix l to denote the substring of x between locations i and j (both inclusive). If x = uvw for 
some (possibly empty) u, v , w, then u is called a prefix of x while v is called a substring 
(also denoted by v [;;; x ) and w is called a suffix of x . Finally, numy(x ) denotes the number 
of occurrences of yin x . The type of kernels we will be studying are defined by 

k(x, X'): = L w s6s,s' = L nums(x ) nums(x ') ws. (2) 
s EA " 

That is, we count the number of occurrences of every string s in both x and x ' and weight 
it by ws , where the latter may be a weight chosen a priori or after seeing data, e.g., for 
inverse document frequency counting [11]. This includes a large number of special cases: 

• Setting W s = 0 for all lsi > 1 yields the bag-of-characters kernel, counting simply 
single characters. 

• The bag-of-words kernel is generated by requiring s to be bounded by whitespace. 
• Setting Ws = 0 for all lsi> n yields limited range correlations of length n. 
• The k-spectrum kernel takes into account substrings of length k [J 2] . It is achieved 

by setting W s = 0 for all lsi i- k. 
• TFIDF weights are achieved by first creating a (compressed) list of all s including 

frequencies of occurrence, and subsequently rescaling W s accordingly. 

All these kernels can be computed efficiently via the construction of suffix-trees, as we will 
see in the following sections. However, before we do so, let us turn to trees. The latter are 
important for two reasons: first since the suffix tree representation of a string will be used to 
compute kernels efficiently, and secondly, since we may wish to compute kernels on trees, 
which will be carried out by reducing trees to strings and then applying a string-kernel. 

3 Tree Kernels 

A tree is defined as a connected directed graph with no cycles. A node with no children 
is referred to as a leaf A subtree rooted at node n is denoted as Tn and t F T is used to 
indicate that t is a subtree of T. If a set of nodes in the tree along with the corresponding 
edges forms a tree then we define it to be a subset tree. If every node n of the tree contains 
a label, denoted by label( n), then the tree is called an labeled tree. If only the leaf nodes 
contain labels then the tree is called an leaf-labeled tree. Kernels on trees can be defined 
by defining kernels on matching subset trees as proposed by [3] or (more restrictively) by 
defining kernels on matching subtrees. In the latter case we have 

k(T, T') = L Wt6t ,t' . (3) 

t FT ,t' FT' 

Ordering Trees An ordered tree is one in which the child nodes of every node are ordered 
as per the ordering defined on the node labels. Unless there is a specific inherent order on 
the trees we are given (which is, e.g., the case for parse-trees), the representation of trees is 



not unique. For instance, the following two unlabeled trees are equivalent and can obtained 
from each other by reordering the nodes. 

~ c!0 To order trees we assume that a lexicographic or­
der is associated with the labels if they exist. Fur­
thermore, we assume that the additional symbols 
'[', '1' satisfy ' [' < '1', and that '1', '[' < label( n) for 
all labels. We will use these symbols to define 

Figure 1: Two equivalent trees tags for each node as follows: 

• For an unlabeled leaf n define tag( n) := [ l. 
• For a labeled leaf n define tag( n) : = [ label( n) 1 . 
• For an unlabeled node n with children nl, ... , nc sort the tags of the children in 

lexicographical order such that tag( n i) ::=; tag( nj) if i < j and define 

tag(n) = [tag(nl)tag(n2) ... tag(nc)l . 

• For a labeled node perform the same operations as above and set 

tag(n) = [ label(n)tag(nl)tag(n2) ... tag(nc) l . 

For instance, the root nodes of both trees depicted above would be encoded as [[] [[] [lll. We 
now prove that the tag of the root node, indeed, is a unique identifier and that it can be 
constructed in log linear time. 

Theorem 1 Denote by T a binary tree with I nodes and let A be the maximum length of a 
label. Then the following properties hold for the tag of the root node: 

1. tag (root) can be computed in (A + 2)(llog21) time and linear storage in I. 
2. Substrings S oftag(root) starting with '[' and ending with a balanced '] ' corre­

spond to subtrees T' ofT where s is the tag on T'. 
3. Arbitrary substrings s oftag(root) correspond to subset trees T' ofT. 
4. tag (root) is invariant under permutations of the leaves and allows the reconstruc-

tion of an unique element of the equivalence class (under permutation). 

Proof We prove claim 1 by induction. The tag of a leaf can be constructed in constant time 
by storing [, ], and a pointer to the label of the leaf (if it exists), that is in 3 operations. Next 
assume that we are at node n, with children nl, n2. Let Tn contain In nodes and Tn, and 
Tn2 contain h, 12 nodes respectively. By our induction assumption we can construct the tag 
for nl and n2 in (A + 2)(h log2 h) and (A + 2)(12 log2 12) time respectively. Comparing 
the tags of nl and n2 costs at most (A + 2) min(h, l2) operations and the tag itself can 
be constructed in constant time and linear space by manipulating pointers. Without loss of 
generality we assume that h ::=; 12 • Thus, the time required to construct tag(n) (normalized 
by A + 2) is 

II (log2 11 + 1) + 1210g2 (1 2) = h log2 (2h) + l210g2 (12) ::=; In log2 (In). (4) 

One way of visualizing our ordering is by imagining that we perform a DFS (depth first 
search) on the tree T and emit a '[' followed by the label on the node, when we visit a node 
for the first time and a '1' when we leave a node for the last time. It is clear that a balanced 
substring s of tag (root) is emitted only when the corresponding DFS on T' is completed. 
This proves claim 2. 
We can emit a substring of tag( root) only if we can perform a DFS on the corresponding 
set of nodes. This implies that these nodes constitute a tree and hence by definition are 
subset trees of T. This proves claim 3. 
Since leaf nodes do not have children their tag is clearly invariant under permutation. For an 
internal node we perform lexicographic sorting on the tags of its children. This removes any 
dependence on permutations. This proves the invariance of tag(root) under permutations 
of the leaves. Concerning the reconstruction, we proceed as follows: each tag of a subtree 
starts with ' [' and ends in a balanced '] ', hence we can strip the first [] pair from the tag, 



take whatever is left outside brackets as the label of the root node, and repeat the procedure 
with the balanced [ ... J entries for the children of the root node. This will construct a tree 
with the same tag as tag(root), thus proving claim 4. • 

An extension to trees with d nodes is straightforward (the cost increases to d log2 d of the 
original cost), yet the proof, in particular (4) becomes more technical without providing 
additional insight, hence we omit this generalization for brevity. 

Corollary 2 Kernels on trees T , T' can be computed via string kernels, if we use 
tag(T) , tag(T') as strings. Ifwe require that only balanced [ . .. J substrings have nonzero 
weight W s then we obtain the subtree matching kernel defined in (3). 

This reduces the problem of tree kernels to string kernels and all we need to show in the fol­
lowing is how the latter can be computed efficiently. For this purpose we need to introduce 
suffix trees. 

4 Suffix Trees and Matching Statistics 

Definition The suffix tree is a compacted trie that stores all suffixes of a given text string. 
We denote the suffix tree of the string x by S (x) . Moreover, let nodes( S( x)) be the set of 
all nodes of S (x) and let root (S (x)) be the root of S (x). For a node w, father (w) denotes 
its parent, T(w) denotes the subtree tree rooted at the node, Ivs(w) denotes the number of 
leaves in the subtree and path( w) := w is the path from the root to the node. That is, we 
use the path w from root to node as the label of the node w. 

abc$ 

ab 
We denote by words(S(x)) the set of all 
strings w such that wu E nodes(S(x )) for 
some (possibly empty) string u, which means 
that words(S(x)) is the set of all possible 
substrings of x. For every t E words(S(x)) 
we define ceil ( t) as the node w such that 

Figure 2: Suffix Tree of ababc w = tu and u is the shortest (possibly empty) 
substring such that w E nodes(S(x)). Similarly, for every t E words(S(x)) we define 
floor(t) as the node w such that t = wu and u is the shortest (possibly empty) substring 
such that w E nodes(S(x )). Given a string t and a suffix tree S(x), we can decide if 
t E words(S(x)) in O(lt l) time by just walking down the corresponding edges of S(x). 
If the sentinel character $ is added to the string x then it can be shown that for any t E 
words(S(x)), lvs( ceil( t)) gives us the number of occurrence of t in x [5]. The idea works 
as follows: all suffixes of x starting with t have to pass through ceil(t), hence we simply 
have to count the occurrences of the sentinel character, which can be found only in the 
leaves. Note that a simple depth first search (OFS) of S(x) will enable us to calculate 
Ivs(w) for each node in S(x) in O(lxl) time and space. 
Let aw be a node in S(x), and v be the longest suffix of w such that v E nodes(S(x)). 
An unlabeled edge aw ---+ v is called a suffix link in S (x ). A suffix link of the form 
aw ---+ W is called atomic. It can be shown that all the suffix links in a suffix tree are atomic 
[5, Proposition 2.9]. We add suffix links to S(x), to allow us to perform efficient string 
matching: suppose we found that aw is a substring of x by parsing the suffix tree S (x). 
It is clear that w is also a substring of x. If we want to locate the node corresponding to 
w, it would be wasteful to parse the tree again. Suffix links can help us locate this node in 
constant time. The suffix tree building algorithms make use of this property of suffix links 
to perform the construction in linear time. The suffix tree construction algorithm of [13] 
constructs the suffix tree and all such suffix links in linear time. 

Matching Statistics Given strings x, y with Ix l = nand Iy l = m, the matching statistics 
of x with respect to y are defined by v, C E p,[n, where Vi is the length of the longest 
substring of y matching a prefix of xli : n], Vi := i + v i - 1, Ci is a pointerto ceil(x[i : Vi]) 

and Ci is a pointer to floor(x [i : Vi]) in S(y). For an example see the table below. 



String a b b a For a given y one can construct v, C correspond-
2 1 2 1 ing to x in linear time. The key observation is that 

ab b babeS ab VH I ::::: Vi - 1, since if xli : Vi] is a substring of 
y then definitely xli + 1 : Vi] is also a substring of 

Table 1: Matching statistic of abba with 
respect to S (a babc). y. Besides this, the matching substring in y that we 

find, must have xli + 1 : Vi] as a prefix. The Match­
ing Statistics algorithm [2] exploits this observation and uses it to cleverly walk down the 
suffix links of S(y) in order to compute the matching statistics in O( lxl ) time. 
More specifically, the algorithm works by maintaining a pointer Pi = floor(x [i : Vi ]). It 
then finds P H I = floor(x[i + 1 : Vi ]) by first walking down the suffix link of Pi and then 
walking down the edges corresponding to the remaining portion of xli + 1 : Vi] until it 
reaches floor( x[i + 1 : Vi]) . Now VH I can be found easily by walking from P H I along the 
edges of S(y) that match the string x li + l : n], until we can go no further. The value of 
VI is found by simply walking down S(y) to find the longest prefix of x which matches a 
substring of y. 

Matching substrings Using V and C we can read off the number of matching substrings 
in x and y. The useful observation here is that the only substrings which occur in both x 
and y are those which are prefixes of x li : Vi] . The number of occurrences of a substring in 
y can be found by lvs(ceil(w)) (see Section 4) . The two lemmas below formalize this. 

Lemma 3 w is a substring of x iff there is an i such that w is a prefix of x li : n]. The 
numbe r of occurrences of w in x can be calculated by finding all such i. 

Lemma 4 The set of matching substrings of x and y is the set of all prefixes of xli : Vi] . 

Proof Let w be a substring of both x and y. By above lemma there is an i such that w 
is a prefix of xli : n]. Since Vi is the length of the maximal prefix of xli : n] which is a 
substring in y, it follows that Vi ::::: Iw l. Hence w must be a prefix of x li : Vi] . • 

5 Weights and Kernels 

From the previous sections we know how to determine the set of all longest prefixes x li : Vi ] 
of x li : n] in y in linear time. The following theorem uses this information to compute 
kernels efficiently. 

Theorem 5 Let x and y be strings and c and V be the matching statistics of x with respect 
to y. Assume that 

W(y , t) = L Wus - W u where u = floor(t) and t = uv. (5) 

sE prefix(v) 

can be computed in constant time for any t. Then k(x, y) can be computed in O(l x l + Iy l) 
time as Ixl Ixl 

k(x, y) = L val(x[i : Vi ]) = L val(ci ) + lvs(ceil(x[i : Vi])) W(y , xli : Vi ]) (6) 
i = 1 i = 1 

where val ( t) := lYse ceil ( t)) . W (y , t ) + val(floor( t)) and val ( root) := O. 

Proof We first show that (6) can indeed be computed in linear time. We know that for S(y) 
the number of leaves can be computed in linear time and likewise c, v. By assumption on 
W(y, t) and by exploiting the recursive nature of valet) we can compute W(y, nodes(i )) 
for all the nodes of S(y) by a simple top down procedure in O(ly l) time. 
Also, due to recursion, the second equality of (6) holds and we may compute each term in 
constant time by a simple lookup for val(ci ) and computation of W(y , xli : Vi]) ' Since we 
have Ixl terms, the whole procedure takes O( lxl ) time, which proves the O( lxl + Iyl) time 
complexity. 
Now we prove that (6) really computes the kernel. We know from Lemma 4 that the sum 
in (2) can be decomposed into the sum over matches between y and each of the prefixes 



of xli : Vi] (this takes care of all the substrings in x matching with y). This reduces the 
problem to showing that each term in the sum of (6) corresponds to the contribution of all 
prefixes of x li : vJ 
Assume we descend down the path xli : Vi] in S(y) (e.g., for the string bab with respect 
to the tree of Figure 2 this would correspond to (root, b, bab», then each of the prefixes t 
along the path (e.g., (' , , b, ba, bab) for the example tree) occurs exactly as many times 
as Ivs( ceil( t)) does. In particular, prefixes ending on the same edge occur the same number 
of times. This allows us to bracket the sums efficiently, and W(y , x) simply is the sum 
along an edge, starting from the ceiling of x to x . Unwrapping val(x ) shows that this is 
simply the sum over the occurrences on the path of x, which proves our claim. • 

So far, our claim hinges on the fact that W(y, t) can be computed in constant time, which 
is far from obvious at first glance. We now show that this is a reasonable assumption in all 
practical cases. 

Length Dependent Weights If the weights Ws depend only on ls i we have Ws = wisi. 

Define Wj := Li=l Wj and compute its values beforehand up to W J where J ~ Ix l for all 
x. Then it follows that It I 

W(y , t) = L Wj - WI floor (tl l = Wlt l - WI floor(t l l (7) 
j=1 ceil (tl l 

which can be computed in constant time. Examples of such weighting schemes are the 
kernels suggested by [15], where Wi = A - i , [7] where Wi = 1, and [10], where Wi = Olio 

Generic Weights In case of generic weights, we have several options: recall that one 
often will want to compute m 2 kernels k(x , x'), given m strings x E X. Hence we could 
build the suffix trees for Xi beforehand and annotate each of the nodes and characters on 
the edges explicitly (at super-linear cost per string), which means that later, for the dot 
products, we will only need to perform table lookup of W( x , x' (i : Vi)). 

However, there is an even more efficient mechanism, which can even deal with dynamic 
weights, depending on the relative frequency of occurrence of the substrings in all x . We 
can build a suffix tree I; of all strings in X. Again, this can be done in time linear in the 
total length of all the strings (simply consider the concatenation of all strings) . It can be 
shown that for all x and all i , xli : Vi] will be a node in this tree. Leaves-counting allows 
to compute these dynanUc weights efficiently, since I; contains all the substrings. 
For W(x,x'(i : Vi)) we make ilie simplifying assumption that Ws = ¢ (Isl ) . ¢(freq(s)), 
that is, Ws depends on length and frequency only. Now note that all the strings ending on 
the same edge in I; will have the same weights assigned to them. Hence, can rewrite (5) as 

It I 

W(y , t) = L W s - L W s = ¢ (freq(t)) L ¢ (i) (8) 
s Eprefix(tl s Eprefix(floor(tl l i= 1 floor(t l l+l 

where u = floor(t), t = uv and s E prefix(v). By precomputing L i ¢ (i) we can evaluate 
(8) in constant time. 
The benefit of (8) is twofold: we can compute the weights of all the nodes of I; in time 
linear in the total length of strings in X . Secondly, for arbitrary x we can compute W(y , t) 
in constant time, thus allowing us to compute k( Xi' x ') in O(l xi l + Ix' l) time. 

Linear Time Prediction Let Xs = {Xl, X2 , . . . , x m} be the set of support vectors. 
Recall that, for prediction in a Support Vector Machine we need to compute f( x) = 
L : I Ctik(Xi, x ), which implies that we need to combine the contribution due to matching 
substrings from each one of the Support Vectors. We first construct S (Xs) in linear time by 
using the [1] algorithm. In S(X8 ) , we associate weight Cti with each leaf associated with 
the support vector Xi . For a node V E nodes(S(X8)) we modify the definition of Ivs(v) 
as the sum of weights associated with the subtree rooted at node v. A straightforward ap­
plication of the matching statistics algorithm of [2] shows that we can find the matching 



statistics of x with respect to all strings in Xs in O(lxl ) time. Now Theorem 5, can be 
applied unchanged to compute f (x). A detailed account and proof can be found in [14]. 
In summary, we can classify texts in linear time regardless of the size of the training set. 
This makes SVM for large-scale text categorization practically feasible. Similar modifica­
tions can also be applied for training SMO like algorithms on strings. 

6 Experimental Results 

For a proof of concept we tested our approach on a remote homology detection problem 1 

[9] using Stafford Noble's SVM package2 as the training algorithm. A length weighted 
kernel was used and we assigned weights W s = Aisl for all substring matches of length 
greater than 3 regardless of triplet boundaries. To evaluate performance we computed the 
ROC50 scores.3 
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Figure 3: Total number of families for which an 
SVM classifier exceeds a ROC50 score threshold. 

Being a proof of concept, we did not try to 
tune the soft margin SVM parameters (the 
main point of the paper being the introduc­
tion of a novel means of evaluating string 
kernels efficiently rather than applications 
- a separate paper focusing on applications 
is in preparation). 
Table 3 contains the ROC50 scores for the 
spectrum kernel with k = 3 [12] and our 
string kernel with A = 0.75. We tested 
with A E {0.25, 0.5, 0.75, O.g} and re­
port the best results here. As can be seen 
our kernel outperforms the spectrum ker­
nel on nearly every every family in the 
dataset. 

It should be noted that this is the first method to allow users to specify weights rather arbi­
trarily for all possible lenghts of matching sequences and still be able to compute kernels at 
O(lxl + Ix' l) time, plus, to predict on new sequences at O(lxl ) time, once the set of support 
vectors is established.4 

7 Conclusion 

We have shown that string kernels need not come at a super-linear cost in SVMs and that 
prediction can be carried out at cost linear only in the length of the argument, thus providing 
optimal run-time behaviour. Furthermore the same algorithm can be applied to trees. 
The methodology pointed out in our paper has several immediate extensions: for instance, 
we may consider coarsening levels for trees by removing some of the leaves. For not 
too-unbalanced trees (we assume that the tree shrinks at least by a constant factor at each 
coarsening) computation of the kernel over all coarsening levels can then be carried out at 
cost still linear in the overall size of the tree. The idea of coarsening can be extended to 
approximate string matching. If we remove characters, this amounts to the use of wildcards. 
Likewise, we can consider the strings generated by finite state machines and thereby com­
pare the finite state machines themselves. This leads to kernels on automata and other 
dynamical systems. More details and extensions can be found in [14]. 

IDetails and data available at www.cse.ucsc.edu/research/compbio/discriminative. 
2 Available at www.cs.columbia.edu/compbio/svm. 
3The ROC50 score [6, 12] is the area under the receiver operating characteristic curve (the plot of 

true positives as a function of false positives) up to the first 50 false positives. A score of I indicates 
perfect separation of positives from negatives, whereas a score of 0 indicates that none of the top 50 
sequences selected by the algorithm were positives . 

4[12] obtain an O(klxl ) algorithm in the (somewhat more restrictive) case ofws = 6k(lsl) . 
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