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We propose a method that allows for a rigorous statistical analysis of
neural responses to natural stimuli, which are non-Gaussian and exhibit
strong correlations. We have in mind a model in which neurons are se-
lective for a small number of stimulus dimensions out of the high di-
mensional stimulus space, but within this subspace the responses can
be arbitrarily nonlinear. Therefore we maximize the mutual information
between the sequence of elicited neural responses and an ensemble of
stimuli that has been projected on trial directions in the stimulus space.
The procedure can be done iteratively by increasing the number of direc-
tions with respect to which information is maximized. Those directions
that allow the recovery of all of the information between spikes and the
full unprojected stimuli describe the relevant subspace. If the dimen-
sionality of the relevant subspace indeed is much smaller than that of the
overall stimulus space, it may become experimentally feasible to map
out the neuron’s input-output function even under fully natural stimulus
conditions. This contrasts with methods based on correlations functions
(reverse correlation, spike-triggered covariance, ...) which all require
simplified stimulus statistics if we are to use them rigorously.

1 Introduction

From olfaction to vision and audition, there is an increasing need, and a growing number
of experiments [1]-[8] that study responses of sensory neurons to natural stimuli. Natural
stimuli have specific statistical properties [9, 10], and therefore sample only a subspace of
all possible spatial and temporal frequencies explored during stimulation with white noise.
Observing the full dynamic range of neural responses may require using stimulus ensem-
bles which approximate those occurring in nature, and it is an attractive hypothesis that
the neural representation of these natural signals may be optimized in some way. Finally,
some neuron responses are strongly nonlinear and adaptive, and may not be predicted from
a combination of responses to simple stimuli. It has also been shown that the variability
in neural response decreases substantially when dynamical, rather than static, stimuli are
used [11, 12]. For all these reasons, it would be attractive to have a rigorous method of
analyzing neural responses to complex, naturalistic inputs.

The stimuli analyzed by sensory neurons are intrinsically high-dimensional, with dimen-



sions d ~ 102 — 103. For example, in the case of visual neurons, input is specified as light
intensity on a grid of at least 10 x 10 pixels. The dimensionality increases further if the
time dependence is to be explored as well. Full exploration of such a large parameter space
is beyond the constraints of experimental data collection. However, progress can be made
provided we make certain assumptions about how the response has been generated. In the
simplest model, the probability of response can be described by one receptive field (RF)
[13]. The receptive field can be thought of as a special direction @ in the stimulus space
such that the neuron’s response depends only on a projection of a given stimulus s onto .
This special direction ¢ is the one found by the reverse correlation method [13, 14]. In a
more general case, the probability of the response depends on projections s(#) = &) . g,
p =1, .., K, of the stimulus s on a set of vectors {¢(1), &) ... e(F)}:

P(spike|s) = P(spike)f(s),s®, ...s(F)), (1)

where P(spike|s) is the probability of a spike given a stimulus s and P(spike) is the av-
erage firing rate. In what follows we will call the subspace spanned by the set of vectors
{é(®} the relevant subspace (RS). Even though the ideas developed below can be used to
analyze input-output functions with respect to different neural responses, we settle on a
single spike as the response of interest.

Eg. (1) in itself is not yet a simplification if the dimensionality K of the RS is equal to the
dimensionality D of the stimulus space. In this paper we will use the idea of dimensionality
reduction [15, 16] and assume that K < D. The input-output function f in Eq. (1) can be
strongly nonlinear, but it is presumed to depend only on a small number of projections. This
assumption appears to be less stringent than that of approximate linearity which one makes
when characterizing neuron’s response in terms of Wiener kernels. The most difficult part
in reconstructing the input-output function is to find the RS. For K > 1, a description in
terms of any linear combination of vectors {é(*)} is just as valid, since we did not make any
assumptions as to a particular form of nonlinear function f. We might however prefer one
coordinate system over another if it, for example, leads to sparser probability distributions
or more statistically independent variables.

Once the relevant subspace is known, the probability P(spike|s) becomes a function of
only few parameters, and it becomes feasible to map this function experimentally, inverting
the probability distributions according to Bayes’ rule:

P({s")}[spike)
P({s™})

If stimuli are correlated Gaussian noise, then the neural response can be characterized by
the spike-triggered covariance method [15, 16]. It can be shown that the dimensionality of
the RS is equal to the number of non-zero eigenvalues of a matrix given by a difference
between covariance matrices of all presented stimuli and stimuli conditional on a spike.
Moreover, the RS is spanned by the eigenvectors associated with the non-zero eigenval-
ues multiplied by the inverse of the a priori covariance matrix. Compared to the reverse
correlation method, we are no longer limited to finding only one of the relevant directions
é(1) . However because of the necessity to probe a two-point correlation function, the spike-
triggered covariance method requires better sampling of distributions of inputs conditional
on a spike.

F{s®}) = @)

In this paper we investigate whether it is possible to lift the requirement for stimuli to be
Gaussian. When using natural stimuli, which are certainly non-Gaussian, the RS cannot be
found by the spike-triggered covariance method. Similarly, the reverse correlation method
does not give the correct RF, even in the simplest case where the input-output function (1)
depends only on one projection. However, vectors that span the RS are clearly special di-
rections in the stimulus space. This notion can be quantified by Shannon information, and



an optimization problem can be formulated to find the RS. Therefore the current imple-
mentation of the dimensionality reduction idea is complimentary to the clustering of stim-
uli done in the information bottleneck method [17]; see also Ref. [18]. Non-information
based measures of similarity between probability distributions P(s) and P(s|spike) have
also been proposed [19]. We illustrate how the optimization scheme of maximizing infor-
mation as function of direction in the stimulus space works with natural stimuli for model
orientation sensitive cells with one and two relevant directions, much like simple and com-
plex cells found in primary visual cortex. It is also possible to estimate average errors in
the reconstruction. The advantage of this optimization scheme is that it does not rely on
any specific statistical properties of the stimulus ensemble, and can be used with natural
stimuli.

2 Information asan objective function

When analyzing neural responses, we compare the a priori probability distribution of all
presented stimuli with the probability distribution of stimuli which lead to a spike. For
Gaussian signals, the probability distribution can be characterized by its second moment,
the covariance matrix. However, an ensemble of natural stimuli is not Gaussian, so that
neither second nor any other finite number of moments is sufficient to describe the prob-
ability distribution. In this situation, the Shannon information provides a convenient way
of comparing two probability distributions. The average information carried by the arrival
time of one spike is given by [20]

Lspike = Z P(s|spike) log, [P(s|spike) / P(s)] . 3)

The information per spike, as written in (3) is difficult to estimate experimentally, since
it requires either sampling of the high-dimensional probability distribution P(s|spike) or
a model of how spikes were generated, i.e. the knowledge of low-dimensional RS. How-
ever it is possible to calculate pike in @ model-independent way, if stimuli are presented
multiple times to estimate the probability distribution P(spike|s). Then,

_ (Plepikels) [ P(spike]s)
Tspire = < P(spike) 082 [ P(spike) :|>s, ®

where the average is taken over all presented stimuli. Note that for a finite dataset of N
repetitions, the obtained value Ispie (V) Will be on average larger than Ispike(o0), with
difference ~ Nggimuii/(Nspike 21n2), Where Nggimyi 1S the number of different stimuli,
and Nypike IS the number of elicited spikes [21] across all of the repetitions. The true value
Ispike Can also be found by extrapolating to N — oo [22]. The knowledge of the total
information per spike will characterize the quality of the reconstruction of the neuron’s
input-output relation.

Having in mind a model in which spikes are generated according to projection onto a low-
dimensional subspace, we start by projecting all of the presented stimuli on a particular
direction v in the stimulus space, and form probability distributions P, (z|spike) = (§(z —
s - v)|spike)s, P,(z) = (d(z — s - v))s. The information

I(v) = / dx P, (x|spike) log, [P, (z|spike)/ P, (x)] , (5)

provides an invariant measure of how much the occurrence of a spike is determined by
projection on the direction ¢. It is a function only of direction in the stimulus space and
does not change when vector v is multiplied by a constant. This can be seen by noting that
for any probability distribution and any constant ¢, P, (z) = ¢~ P,(z/c). When evaluated
along any vector, I(v) < Ipike. The total information Igpike Can be recovered along one

particular direction only if v = (), and the RS is one-dimensional.



By analogy with (5), one could also calculate information I(v1, ..., v,,) along a set of several
directions {v1, ...v, } based on the multi-point probability distributions:

n n

Py,...v0 ({xi}|spike) = <H J(xi—s-v,-)|spike)s, Py,.....v. ({:L‘,}) = <H d(z;—s;))s-

i=1 =1

If we are successful in finding all of the K directions é(#) in the input-output relation (1),
then the information evaluated along the found set will be equal to the total information
Ispike. When we calculate information along a set of . vectors that are slightly off from the
RS, the answer is, of course, smaller than sy and is quadratic in deviations dv;. One can
therefore find the RS by maximizing information with respect to k vectors simultaneously.
The information does not increase if more vectors outside the RS are included into the
calculation. On the other hand, the result of optimization with respect to the number of
vectors k¥ < K may deviate from the RS if stimuli are correlated. The deviation is also
proportional to a weighted average of P(spike|s'V), ..., s()) — P(spike|s(!), ..., s(5)). For
uncorrelated stimuli, any vector or a set of vectors that maximizes I(v) belongs to the RS.
To find the RS, we first maximize I(v), and compare this maximum with Igixe, Which is
estimated according to (4). If the difference exceeds that expected from finite sampling
corrections, we increment the number of directions with respect to which information is
simultaneously maximized.

The information I(v) as defined by (5) is a continuous function, whose gradient can be
computed

_ . d P,(z|spike)

VI = /dev(x) [(s|z, spike) — (s|z)] iz P) (6)

Since information does not change with the length of the vector, V,I L v (which can
also be seen from (6) directly), unnecessary evaluations of information for multiples of
v are avoided by maximizing along the gradient. As an optimization algorithm, we have
used a combination of gradient ascent and simulated annealing algorithms: successive line
maximizations were done along the direction of the gradient. During line maximizations, a
point with a smaller value of information was accepted according to Boltzmann statistics,
with probability oc exp[(I(vi+1) — I(v;))/T]. The effective temperature T is reduced upon
completion of each line maximization.

3 Discussion

We tested the scheme of looking for the most informative directions on model neurons that
respond to stimuli derived from natural scenes. As stimuli we used patches of digitized to
8-bit scale photos, in which no corrections were made for camera’s light intensity transfor-
mation function. Our goal is to demonstrate that even though spatial correlations present
in natural scenes are non-Gaussian, they can be successfully removed from the estimate of
vectors defining the RS.

3.1 SimpleCdl

Our first example is taken to mimic properties of simple cells found in the primary visual
cortex. A model phase and orientation sensitive cell has a single relevant direction é()
shown in Fig. 1(a). A given frame s leads to a spike if projection s = s - é(1) reaches a
threshold value 4 in the presence of noise:

P(spike|s)
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Figure 1. Analysis of a model simple cell with RF shown in (a). The spike-triggered
average wvsta 1S shown in (b). Panel (c) shows an attempt to remove correlations accord-
ing to reverse correlation method, C I}”.m.vsta; (d) vector vya, found by maximizing
information; (e) The probability of a spike P(spike|s - Opmqz) (Crosses) is compared to
P(spike|s(™) used in generating spikes (solid line). Parameters ¢ = 0.1(Smax — Smin)
and @ = 0.6(Smax — Smin) [Smax @Nd smin are the maximum and minimum values of s(*)
over the ensemble of presented stimuli.] (f) Convergence of the algorithm according to

information I(v) and projection v - é(!) as a function of inverse effective temperature 7.

where Gaussian random variable £ of variance ¢ models additive noise, and function
H(z) = 1forz > 0, and zero otherwise. Together with the RF ¢(1), the parameters 6
for threshold and the noise variance o determine the input-output function.

The spike-triggered average (STA), shown in Fig. 1(b), is broadened because of spatial
correlations present in natural stimuli. If stimuli were drawn from a Gaussian probability
distribution, they could be decorrelated by multiplying vs¢, by the inverse of the a priori
covariance matrix, according to the reverse correlation method. The procedure is not valid
for non-Gaussian stimuli and nonlinear input-output functions (1). The result of such a
decorrelation is shown in Fig. 1(c). It is clearly missing the structure of the model filter.
However, it is possible to obtain a good estimate of it by maximizing information directly,
see panel (d). A typical progress of the simulated annealing algorithm with decreasing
temperature 7" is shown in panel (e). There we plot both the information along the vector,
and its projection on é). The final value of projection depends on the size of the data
set, see below. In the example shown in Fig. 1 there were ~ 50, 000 spikes with average
probability of spike ~ 0.26 per frame. Having reconstructed the RF, one can proceed to
sample the nonlinear input-output function. This is done by constructing histograms for
P(s - tmax) and P(s - Omax|spike) of projections onto vector 9max found by maximizing
information, and taking their ratio. In Fig. 1(e) we compare P(spike|s - Umax) (Crosses)
with the probability P(spike|s()) used in the model (solid line).

3.2 Estimated deviation from the optimal direction

When information is calculated with respect to a finite data set, the vector ¢ which maxi-
mizes I will deviate from the true RF é(Y). The deviation év = © — &) arises because the
probability distributions are estimated from experimental histograms and differ from the
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Figure 2: Projection of Vector vy, that maximizes information on RF é(1) is plotted as a
function of the number of spikes to show the linear scaling in 1/Ngpike (solid line is a fit).

distributions found in the limit on infinite data size. For a simple cell, the quality of recon-
struction can be characterized by the projection 4 - é*) = 1 — £§v2, where both 4 and é(*)
are normalized, and dv is by definition orthogonal to é(*). The deviation év ~ A=V,
where A is the Hessian of information. Its structure is similar to that of a covariance matrix:

. 2
Ay = o5 [ dsPGalspike) (%m%) (si5517) — (sile) (5512)) (®)

When averaged over possible outcomes of N trials, the gradient of information is zero for
the optimal direction. Here in order to evaluate (dv2?) = Tr[A~1(VIVIT)A~1], we need
to know the variance of the gradient of I. By discretizing both the space of stimuli and
possible projections x, and assuming that the probability of generating a spike is indepen-
dent for different bins, one could obtain that (VI;VI;) ~ A;;/(Ngpikeln2). Therefore
an expected error in the reconstruction of the optimal filter is inversely proportional to the
number of spikes and is given by:

! —1
1= 5o p Ligp2y = A ]

= —— 9

2 2Nspike In2 ’ ( )

where Tr' means that the trace is taken in the subspace orthogonal to the model filter, since

by definition év - ¢ = 0. In Fig. 2 we plot the average projection of the normalized
reconstructed vector & on the RF é(1), and show that it scales with the number of spikes.

3.3 Complex Cell

A sequence of spikes from a model cell with two relevant directions was simulated by
projecting each of the stimuli on vectors that differ by 7/2 in their spatial phase, taken to
mimic properties of complex cells, see Fig. 3. A particular frame leads to a spike according
to a logical OR, that is if either s(V) = s-é(1), —s(V s = 5.8 or —s(2) exceeds a
threshold value s; in the presence of noise. Similarly to (7),

P(spike[s)

P(spike)
where & and & are independent Gaussian variables. The sampling of this input-output
function by our particular set of natural stimuli is shown in Fig. 3(c). Some, especially
large, combinations of values of s(*) and s(2) are not present in the ensemble.

=f(sM,s®) = (H(sW|-0-&) v H(|sP|-0-&)), (10



We start by maximizing information with respect to one direction. Contrary to analysis for
a simple cell, one optimal direction recovers only about 60% of the total information per
spike. This is significantly different from the total Ispike for stimuli drawn from natural
scenes, where due to correlations even a random vector has a high probability of explain-
ing 60% of total information per spike. We therefore go on to maximize information with
respect to two directions. An example of the reconstruction of input-output function of a
complex cell is given in Fig. 3. Vectors v; and v, that maximize I (v, v2) are not orthogo-
nal, and are also rotated with respect to é(*) and é(2). However, the quality of reconstruction
is independent of a particular choice of basis with the RS. The appropriate measure of sim-
ilarity between the two planes is the dot product of their normals. In the example of Fig. 3,
/ﬁ/(é(l),é(Q)) - ’fl({}l,,{)2) =~ 0.8.

Maximizing information with respect to two directions requires a significantly slower cool-
ing rate, and consequently longer computational times. However, an expected error in the
reconstruction, 1 — A (z1) g2)) - A(s, ), TOllOws a Ns;ilke behavior, similarly to (9), and is
roughly twice that for a simple cell given the same number of spikes. In this calculation
there were = 10° spikes.
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Figure 3: Analysis of a model complex cell with relevant directions é(*) and é(2) shown in
(a) and (b). Spikes are generated according to an “OR” input-output function f(s(), s(?))
with the threshold # = 0.6(smax — Smin) and noise variance o = 0.05(Smax — Smin)-
Panel (c) shows how the input-output function is sampled by our ensemble of stimuli. Dark
pixels for large values of s() and s correspond to cases where P(s("), s(2)) = 0. Below,
we show vectors v, and v, found by maximizing information I(v1,v2) together with the
corresponding input-output function with respect to projections s - v; and s - vs.

In conclusion, features of the stimulus that are most relevant for generating the response
of a neuron can be found by maximizing information between the sequence of responses
and the projection of stimuli on trial vectors within the stimulus space. Calculated in this
manner, information becomes a function of direction in a stimulus space. Those directions
that maximize the information and account for the total information per response of interest
span the relevant subspace. This analysis allows the reconstruction of the relevant subspace
without assuming a particular form of the input-output function. It can be strongly nonlin-
ear within the relevant subspace, and is to be estimated from experimental histograms.
Most importantly, this method can be used with any stimulus ensemble, even those that are
strongly non-Gaussian as in the case of natural images.
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