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Abstract

We consider Bayesian mixture approaches, where a predictor is
constructed by forming a weighted average of hypotheses from some
space of functions. While such procedures are known to lead to
optimal predictors in several cases, where sufficiently accurate prior
information is available, it has not been clear how they perform
when some of the prior assumptions are violated. In this paper we
establish data-dependent bounds for such procedures, extending
previous randomized approaches such as the Gibbs algorithm to
a fully Bayesian setting. The finite-sample guarantees established
in this work enable the utilization of Bayesian mixture approaches
in agnostic settings, where the usual assumptions of the Bayesian
paradigm fail to hold. Moreover, the bounds derived can be directly
applied to non-Bayesian mixture approaches such as Bagging and
Boosting.

1 Introduction and Motivation

The standard approach to Computational Learning Theory is usually formulated
within the so-called frequentist approach to Statistics. Within this paradigm one is
interested in constructing an estimator, based on a finite sample, which possesses a
small loss (generalization error). While many algorithms have been constructed and
analyzed within this context, it is not clear how these approaches relate to standard
optimality criteria within the frequentist framework. Two classic optimality criteria
within the latter approach are the minimax and admissibility criteria, which charac-
terize optimality of estimators in a rigorous and precise fashion [9]. Except in some
special cases [12], it is not known whether any of the approaches used within the
Learning community lead to optimality in either of the above senses of the word.
On the other hand, it is known that under certain regularity conditions, Bayesian
estimators lead to either minimax or admissible estimators, and thus to well-defined
optimality in the classical (frequentist) sense. In fact, it can be shown that Bayes
estimators are essentially the only estimators which can achieve optimality in the
above senses [9]. This optimality feature provides strong motivation for the study
of Bayesian approaches in a frequentist setting.

While Bayesian approaches have been widely studied, there have not been generally



applicable bounds in the frequentist framework. Recently, several approaches have
attempted to address this problem. In this paper we establish finite sample data-
dependent bounds for Bayesian mixture methods, which together with the above
optimality properties suggest that these approaches should become more widely
used.

Consider the problem of supervised learning where we attempt to construct an es-
timator based on a finite sample of pairs of examples S = {(x1, y1), . . . , (xn, yn)},
each drawn independently according to an unknown distribution µ(x, y). Let A be
a learning algorithm which, based on the sample S, constructs a hypothesis (esti-
mator) h from some set of hypotheses H. Denoting by `(y, h(x)) the instantaneous
loss of the hypothesis h, we wish to assess the true loss L(h) = Eµ`(y, h(x)) where
the expectation is taken with respect to µ. In particular, the objective is to provide
data-dependent bounds of the following form. For any h ∈ H and δ ∈ (0, 1), with
probability at least 1− δ,

L(h) ≤ Λ(h, S) + ∆(h, S, δ), (1)

where Λ(h, S) is some empirical assessment of the true loss, and ∆(h, S, δ) is a com-
plexity term. For example, in the classic Vapnik-Chervonenkis framework, Λ(h, S)
is the empirical error (1/n)

∑n
i=1 `(yi, h(xi)) and ∆(h, S, δ) depends on the VC-

dimension of H but is independent of both the hypothesis h and the sample S. By
algorithm and data-dependent bounds we mean bounds where the complexity term
depends on both the hypothesis (chosen by the algorithm A) and the sample S.

2 A Decision Theoretic Bayesian Framework

Consider a decision theoretic setting where we define the sample dependent loss of
an algorithm A by R(µ,A, S) = Eµ`(y,A(x, S)). Let θµ be the optimal predictor
for y, namely the function minimizing Eµ{`(y, φ(x))} over φ. It is clear that the
best algorithm A (Bayes algorithm) is the one that always return θµ, assuming µ
is known. We are interested in the expected loss of an algorithm averaged over
samples S:

R(µ,A) = ESR(µ,A, S) =

∫

R(µ,A, S)dµ(S),

where the expectation is taken with respect to the sample S drawn i.i.d. from the
probability measure µ. If we consider a family of measures µ, which possesses some
underlying prior distribution π(µ), then we can construct the averaged risk function
with respect to the prior as,

r(π,A) = EπR(µ,A) =

∫

dµ(S)dπ(µ)

∫

R(µ,A, S)dπ(µ|S),

where dπ(µ|S) = dµ(S)dπ(µ)
∫

µ
dµ(S)dπ(µ)

is the posterior distribution on the µ family, which

induces a posterior distribution on the sample space as πS = Eπ(µ|S)µ. An algorithm
minimizing the Bayes risk r(π,A) is referred to as a Bayes algorithm. In fact, for a
given prior, and a given sample S, the optimal algorithm should return the Bayes
optimal predictor with respect to the posterior measure πS .

For many important practical problems, the optimal Bayes predictor is a linear
functional of the underlying probability measure. For example, if the loss function is
quadratic, namely `(y,A(x)) = (y−A(x))2, then the optimal Bayes predictor θµ(x)
is the conditional mean of y, namely Eµ[y|x]. For binary classification problems, we
can let the predictor be the conditional probability θµ(x) = µ(y = 1|x) (the optimal
classification decision rule then corresponds to a test of whether θµ(x) > 0.5), which



is also a linear functional of µ. Clearly if the Bayes predictor is a linear functional
of the probability measure, then the optimal Bayes algorithm with respect to the
prior π is given by

AB(x, S) =

∫

µ

θµ(x)dπ(µ|S) =

∫

µ
θµ(x)dµ(S)dπ(µ)
∫

µ
dµ(S)dπ(µ)

. (2)

In this case, an optimal Bayesian algorithm can be regarded as the predictor con-
structed by averaging over all predictors with respect to a data-dependent posterior
π(µ|S). We refer to such methods as Bayesian mixture methods. While the Bayes
estimator AB(x, S) is optimal with respect to the Bayes risk r(π,A), it can be
shown, that under appropriate conditions (and an appropriate prior) it is also a
minimax and admissible estimator [9].

In general, θµ is unknown. Rather we may have some prior information about
possible models for θµ. In view of (2) we consider a hypothesis space H, and an
algorithm based on a mixture of hypotheses h ∈ H. This should be contrasted
with classical approaches where an algorithm selects a single hypothesis h form
H. For simplicity, we consider a countable hypothesis space H = {h1, h2, . . .}; the
general case will be deferred to the full paper. Let q = {qj}

∞
j=1 be a probability

vector, namely qj ≥ 0 and
∑

j qj = 1, and construct the composite predictor by

fq(x) =
∑

j qjhj(x). Observe that in general fq(x) may be a great deal more

complex that any single hypothesis hj . For example, if hj(x) are non-polynomial
ridge functions, the composite predictor f corresponds to a two-layer neural network
with universal approximation power. We denote by Q the probability distribution
defined by q, namely

∑

j qjhj = Eh∼Qh.

A main feature of this work is the establishment of data-dependent bounds on
L(Eh∼Qh), the loss of the Bayes mixture algorithm. There has been a flurry of
recent activity concerning data-dependent bounds (a non-exhaustive list includes
[2, 3, 5, 11, 13]). In a related vein, McAllester [7] provided a data-dependent bound
for the so-called Gibbs algorithm, which selects a hypothesis at random from H
based on the posterior distribution π(h|S). Essentially, this result provides a bound
on the average error Eh∼QL(h) rather than a bound on the error of the averaged
hypothesis. Later, Langford et al. [6] extended this result to a mixture of classifiers
using a margin-based loss function. A more general result can also be obtained using
the covering number approach described in [14]. Finally, Herbrich and Graepel
[4] showed that under certain conditions the bounds for the Gibbs classifier can
be extended to a Bayesian mixture classifier. However, their bound contained an
explicit dependence on the dimension (see Thm. 3 in [4]).

Although the approach pioneered by McAllester came to be known as PAC-Bayes,
this term is somewhat misleading since an optimal Bayesian method (in the decision
theoretic framework outline above) does not average over loss functions but rather
over hypotheses. In this regard, the learning behavior of a true Bayesian method is
not addressed in the PAC-Bayes analysis. In this paper, we would like to narrow the
discrepancy by analyzing Bayesian mixture methods, where we consider a predictor
that is the average of a family of predictors with respect to a data-dependent poste-
rior distribution. Bayesian mixtures can often be regarded as a good approximation
to a true optimal Bayesian method. In fact, we have shown above that they are
equivalent for many important practical problems.

Therefore the main contribution of the present work is the extension of the above
mentioned results in PAC-Bayes analysis to a rather unified setting for Bayesian
mixture methods, where different regularization criteria may be incorporated, and
their effect on the performance easily assessed. Furthermore, it is also essential that



the bounds obtained are dimension-independent, since otherwise they yield useless
results when applied to kernel-based methods, which often map the input space into
a space of very high dimensionality. Similar results can also be obtained using the
covering number analysis in [14]. However the approach presented in the current
paper, which relies on the direct computation of the Rademacher complexity, is more
direct and gives better bounds. The analysis is also easier to generalize than the
corresponding covering number approach. Moreover, our analysis applies directly
to other non-Bayesian mixture approaches such as Bagging and Boosting.

Before moving to the derivation of our bounds, we formalize our approach. Consider
a countable hypothesis space H = {hj}

∞
j=1, and a probability distribution {qj} over

H. Introduce the vector notation
∑∞

k=1 qkhk(x) = q>h(x). A learning algorithm
within the Bayesian mixture framework uses the sample S to select a distribution
Q over H and then constructs a mixture hypothesis fq(x) = q>h(x). In order to
constrain the class of mixtures used in constructing the mixture q>h we impose
constraints on the mixture vector q. Let g(q) be a non-negative convex function of
q and define for any positive A,

ΩA = {q ∈ S : g(q) ≤ A} ; FA =
{

fq : fq(x) = q>h(x) : q ∈ ΩA
}

, (3)

where S denotes the probability simplex. In subsequent sections we will consider
different choices for g(q), which essentially acts as a regularization term. Finally,
for any mixture q>h we define the loss by L(q>h) = Eµ`(y, (q

>h)(x)) and the

empirical loss incurred on the sample by L̂(q>h) = (1/n)
∑n

i=1 `(yi, (q
>h)(xi)).

3 A Mixture Algorithm with an Entropic Constraint

In this section we consider an entropic constraint, which penalizes weights deviat-
ing significantly from some prior probability distribution ν = {νj}

∞
j=1, which may

incorporate our prior information about he problem. The weights q themselves are
chosen by the algorithm based on the data. In particular, in this section we set g(q)
to be the Kullback-Leibler divergence of q from ν,

g(q) = D(q‖ν) ; D(q‖ν) =
∑

j

qj log(qj/νj).

Let F be a class of real-valued functions, and denote by σi independent Bernoulli
random variables assuming the values ±1 with equal probability. We define the
data-dependent Rademacher complexity of F as

R̂n(F) = Eσ

[

sup
f∈F

1

n

n
∑

i=1

σif(xi) |S

]

.

The expectation of R̂n(F) with respect to S will be denoted by Rn(F). We note

that R̂n(F) is concentrated around its mean value Rn(F) (e.g., Thm. 8 in [1]). We
quote a slightly adapted result from [5].

Theorem 1 (Adapted from Theorem 1 in [5])
Let {x1,x2, . . . ,xn} ∈ X be a sequence of points generated independently at random
according to a probability distribution P , and let F be a class of measurable functions
from X to R. Furthermore, let φ be a non-negative Lipschitz function with Lipschitz
constant κ, such that φ◦f is uniformly bounded by a constantM . Then for all f ∈ F
with probability at least 1− δ

Eφ(f(x))−
1

n

n
∑

i=1

φ(f(xi)) ≤ 4κRn(F) +M

√

log(1/δ)

2n
.



An immediate consequence of Theorem 1 is the following.

Lemma 3.1 Let the loss function ` be bounded by M , and assume that it is Lips-
chitz with constant κ. Then for all q ∈ ΩA with probability at least 1− δ

L(q>h) ≤ L̂(q>h) + 4κRn(FA) +M

√

log(1/δ)

2n
.

Next, we bound the empirical Rademacher average of FA using g(q) = D(q‖ν).

Lemma 3.2 The empirical Rademacher complexity of FA is upper bounded as fol-
lows:

R̂n(FA) ≤

(

√

2A

n

)

sup
j

√

√

√

√

1

n

n
∑

i=1

hj(xi)2 .

Proof: We first recall a few facts from the theory of convex duality [10]. Let p(u)
be a convex function over a domain U , and set its dual s(z) = supu∈U

(

u>z− p(u)
)

.
It is known that s(z) is also convex. Setting u = q and p(q) =

∑

j qj log(qj/νj) we

find that s(v) = log
∑

j νje
zj . From the definition of s(z) it follows that for any

q ∈ S,

q>z ≤
∑

j

qj log(qj/νj) + log
∑

j

νje
zj .

Since z is arbitrary, we set z = (λ/n)
∑

i σih(xi) and conclude that for q ∈ ΩA and
any λ > 0

sup
q∈ΩA

{

1

n

n
∑

i=1

σiq
>h(xi)

}

≤
1

λ







A+ log
∑

j

νj exp

[

λ

n

∑

i

σihj(xi)

]







.

Taking the expectation with respect to σ, and using the Chernoff bound
Eσ {exp (

∑

i σiai)} ≤ exp
(
∑

i a
2
i /2
)

, we have that

R̂n(FA) ≤
1

λ







A+Eσ log
∑

j

νj exp

[

λ

n

∑

i

σihj(xi)

]







≤
1

λ

{

A+ sup
j
logEσ exp

[

λ

n

∑

i

σihj(xi)

]}

(Jensen)

≤
1

λ

{

A+ sup
j
log exp

[

λ2

n2

∑

i

hj(xi)
2

2

]}

(Chernoff)

=
A

λ
+

λ

2n2
sup
j

∑

i

hj(xi)
2 .

Minimizing the r.h.s. with respect to λ, we obtain the desired result. ¤

Combining Lemmas 3.1 and 3.2 yields our basic bound, where κ and M are defined
in Lemma 3.1.

Theorem 2 Let S = {(x1, y1), . . . , (xn, yn)} be a sample of i.i.d. points each
drawn according to a distribution µ(x, y). Let H be a countable hypothesis class,
and set FA to be the class defined in (3) with g(q) = D(q‖ν). Set ∆H =



[

(1/n)Eµ supj
∑n

i=1 hj(xi)
2
]1/2

. Then for any q ∈ ΩA with probability at least
1− δ

L(q>h) ≤ L̂(q>h) + 4κ∆H

√

2A

n
+M

√

log(1/δ)

2n
.

Note that if hj are uniformly bounded, hj ≤ c, then ∆H ≤ c. Theorem 2 holds for a
fixed value of A. Using the so-called multiple testing Lemma (e.g. [11]) we obtain:

Corollary 3.1 Let the assumptions of Theorem 2 hold, and let {Ai, pi} be a set of
positive numbers such that

∑

i pi = 1. Then for all Ai and q ∈ ΩAi with probability
at least 1− δ,

L(q>h) ≤ L̂(q>h) + 4κ∆H

√

2Ai

n
+M

√

log(1/piδ)

2n
.

Note that the only distinction with Theorem 2 is the extra factor of log pi which is
the price paid for the uniformity of the bound.

Finally, we present a data-dependent bound of the form (1).

Theorem 3 Let the assumptions of Theorem 2 hold. Then for all q ∈ S with
probability at least 1− δ,

L(q>h) ≤ L̂(q>h) + max(κ∆H,M)×

√

130D(q‖ν) + log(1/δ)

n
. (4)

Proof sketch Pick Ai = 2
i and pi = 1/i(i+1), i = 1, 2, . . . (note that

∑

i pi = 1).
For each q, let i(q) be the smallest index for which Ai(q) ≥ D(q‖ν) implying that
log(1/pi(q)) ≤ 2 log log2(4D(q‖ν)). A few lines of algebra, to be presented in the
full paper, yield the desired result. ¤

The results of Theorem 3 can be compared to those derived by McAllester [8] for
the randomized Gibbs procedure. In the latter case, the first term on the r.h.s. is
Eh∼QL̂(h), namely the average empirical error of the base classifiers h. In our case

the corresponding term is L̂(Eh∼Qh), namely the empirical error of the average
hypothesis. Since Eh∼Qh is potentially much more complex than any single h ∈ H,
we expect that the empirical term in (4) is much smaller than the corresponding
term in [8]. Moreover, the complexity term we obtain is in fact tighter than the
corresponding term in [8] by a logarithmic factor in n (although the logarithmic
factor in [8] could probably be eliminated). We thus expect that Bayesian mixture
approach advocated here leads to better performance guarantees.

Finally, we comment that Theorem 3 can be used to obtain so-called oracle inequal-
ities. In particular, let q∗ be the optimal distribution minimizing L(q>h), which
can only be computed if the underlying distribution µ(x, y) is known. Consider an
algorithm which, based only on the data, selects a distribution q̂ by minimizing
the r.h.s. of (4), with the implicit constants appropriately specified. Then, using
standard approaches (e.g. [2]) we can obtain a bound on L(q̂>h) − L(q∗>h). For
lack of space, we defer the derivation of the precise bound to the full paper.

4 General Data-Dependent Bounds for Bayesian Mixtures

The Kullback-Leibler divergence is but one way to incorporate prior information.
In this section we extend the results to general convex regularization functions



g(q). Some possible choices for g(q) besides the Kullback-Leibler divergence are
the standard Lp norms ‖q‖p.

In order to proceed along the lines of Section 3, we let s(z) be the convex func-
tion associated with g(q), namely s(z) = supq∈ΩA

{

q>z− g(q)
}

. Repeating

the arguments of Section 3 we have for any λ > 0 that 1
n

∑n
i=1 σiq

>h(xi) ≤
1
λ

{

A+ s
(

λ
n

∑

i σih(xi)
)}

, which implies that

R̂n(FA) ≤ inf
λ≥0

1

λ

{

A+Eσs

(

λ

n

∑

i

σih(xi)

)}

. (5)

Assume that s(z) is second order differentiable, and that for any h =
∑n

i=1 σih(xi)
1
2 (s(h + ∆h) + s(h − ∆h)) − s(h) ≤ u(∆h). Then, assuming that s(0) = 0, it is
easy to show by induction that

Eσs
(

(λ/n)
∑n

i=1
σih(xi)

)

≤

n
∑

i=1

u((λ/n)h(xi)). (6)

In the remainder of the section we focus on the the case of regularization based on
the Lp norm. Consider p and q such that 1/q + 1/p = 1, p ∈ (1,∞), and let p

′ =
max(p, 2) and q′ = min(q, 2). Note that if p ≤ 2 then q ≥ 2, q′ = p′ = 2 and if p > 2

then q < 2, q′ = q, p′ = p. Consider p-norm regularization g(q) = 1
p′ ‖q‖

p′

p , in which

case s(z) = 1
q′ ‖z‖

q′

q . The Rademacher averaging result for p-norm regularization

is known in the Geometric theory of Banach spaces (type structure of the Banach
space), and it also follows from Khinchtine’s inequality. We show that it can be
easily obtained in our framework.

In this case, it is easy to see that s(z) = 1
q′ ‖z‖

q′

q implies u(h(x)) ≤
q−1
q′ ‖h(x)‖

q′

q .

Substituting in (5) we have

R̂n(FA) ≤ inf
λ≥0

1

λ

{

A+
q − 1

q′

(

λ

n

)q′ n
∑

i=1

‖h(xi)‖
q′

q

}

=
Cq
n1/p′

A1/p′

(

1

n

n
∑

i=1

‖h(xi)‖
q′

q

)1/q′

where Cq = ((q − 1)/q
′)
1/q′
.

Combining this result with the methods described in Section 3, we establish a bound
for regularization based on the Lp norm. Assume that ‖h(xi)‖q is finite for all i,

and set ∆H,q =
(

E
{

(1/n)
∑n

i=1 ‖h(xi)‖
q′

q

})1/q′

.

Theorem 4 Let the conditions of Theorem 3 hold and set g(q) = 1
p′ ‖q‖

p′

p , p ∈

(1,∞). Then for all q ∈ S, with probability at least 1− δ,

L(q>h) ≤ L̂(q>h) + max(κ∆H,q,M)×O

(

‖q‖p
n1/p′

+

√

log log(‖q‖p + 3) + log(1/δ)

n

)

where O(·) hides a universal constant that depends only on p.

5 Discussion

We have introduced and analyzed a class of regularized Bayesian mixture ap-
proaches, which construct complex composite estimators by combining hypotheses



from some underlying hypothesis class using data-dependent weights. Such weighted
averaging approaches have been used extensively within the Bayesian framework,
as well as in more recent approaches such as Bagging and Boosting. While Bayesian
methods are known, under favorable conditions, to lead to optimal estimators in a
frequentist setting, their performance in agnostic settings, where no reliable assump-
tions can be made concerning the data generating mechanism, has not been well
understood. Our data-dependent bounds allow the utilization of Bayesian mixture
models in general settings, while at the same time taking advantage of the benefits
of the Bayesian approach in terms of incorporation of prior knowledge. The bounds
established, being independent of the cardinality of the underlying hypothesis space,
can be directly applied to kernel based methods.
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