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Abstract

vVe analyze the convergence properties of three spike-triggered data
analysis techniques. All of our results are obtained in the set­
ting of a (possibly multidimensional) linear-nonlinear (LN) cascade
model for stimulus-driven neural activity. We start by giving exact
rate of convergence results for the common spike-triggered average
(STA) technique. Next, we analyze a spike-triggered covariance
method, variants of which have been recently exploited successfully
by Bialek, Simoncelli, and colleagues. These first two methods suf­
fer from extraneous conditions on their convergence; therefore, we
introduce an estimator for the LN model parameters which is de­
signed to be consistent under general conditions. We provide an
algorithm for the computation of this estimator and derive its rate
of convergence. We close with a brief discussion of the efficiency
of these estimators and an application to data recorded from the
primary motor cortex of awake, behaving primates.

1 Introduction

Systems-level neuroscientists have a few favorite problems, the most prominent of
which is the "what" part of the neural coding problem: what makes a given neuron
in a particular part of the brain fire? In more technical language, we want to know
about the conditional probability distributions P(spikelX = x), the probability
that our cell emits a spike, given that some observable signal X in the world takes
value x. Because data is expensive, neuroscientists typically postulate a functional
form for this collection of conditional distributions, and then fit experimental data to
these functional models, in lieu of attempting to directly estimate P(spikelX = x)
for each possible x. In this paper, we analyze one such phenomenological model
whose popularity seems to be on the rise:

p(spikelx) = f( < k1 , x>, < k2 , x>, . .. ,< km , x ». (1)
Here f is some arbitrary nonconstant, ~m-measurable, [O,l]-valued function, and
{ki } are some linearly independent elements of the dual space, X', of some topologi­
cal vector space, X - the space of possible "input signals." Interpret f as a regular
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conditional distribution. Roughly, then, the neuron projects the signal xonto some
m-dimensional subspace spanned by {ki}l<i<m (call this subspace K), then looks
up its probability of firing based only on thIs-projection. This model is often called
a "linear-nonlinear," or "LN," cascade model. It is also a probabilistic analog of a
certain type of "Wiener cascade" model; this class of models has received extensive
study in the systems identification literature. (Note that this model is not the same
as a Volterra series model; these two classes of systems have very different uniform
approximation properties.)

The LN model has two important features. First, the spike trains of the cell are
given by a conditionally (inhomogeneous) Poisson process given x; that is, there are
no dynamics in this model beyond those induced by x and K. Second, equation (1)
implies:

p(spikelx) = p(spikelx + y) V y 1- K. (2)
In other words, the conditional probability of firing is constant along (hyper)planes
in the input space. (The natural generalization of this is a model for which these
surfaces of constant firing probability are manifolds of low codimension; however,
we will stick to the linear case here.) This model is semiparametric in the sense
that it separates the problem of learning p(spikelx) into two pieces: 1) learning the
finite-dimensional parameter K, and 2) learning the infinite-dimensional parameter
f. If K is given, the problem of learning f reduces to a density estimation problem,
about which much is known. The problem of estimating K seems to be less well­
understood, and we focus primarily on this problem here.

We start with some notation. Let N, as usual, denote the number of available
samples, drawn from the fixed stimulus distribution p(x) (in practice, of course, the
samples from p(x) are not independent; for simplicity, we will stick to the i.i.d. case
here, but most of our methods can be extended to the more general case). Then
our basic results will take the following form:

E (Error(K)) '" aN-).. + {3,

as N becomes large. The estimator K is a deterministic map taking N observations
of stimulus and spike data (where spikes are binary random variables, conditionally
independent given the stimulus) into an estimate of the true underlying K:

K : (X x {a, l})N -t Qm(X) (4)

(XN,SN) -t K(XN,SN), (5)

where (fEN, SN) denotes the N-sample data. Qm(X) is the m-Grassmann manifold
of X, the space of all m-dimensional subspaces of X; the natural error metric,
then, is the geodesic distance on Qm(X) (the "canonical angle") between the true
subspace K and the estimated subspace K. For brevity, we will present most of our
results in the m = 1 case only; here the metric takes the simple form

A _ -1 < K,k1 >
Error(K) = cos A ~ •

IIKllllk111
The scalar terms A, a, and f3 in (3) each depend on .J, K, and p(x); A is a constant
giving the order of magnitude of convergence (usually, but not always, equal to 1/2),
a gives the precise convergence rate, and (3 gives the asymptotic error. We will be
mostly concerned with giving exact values for a and A, and simply indicating when
(3 is zero or positive (i.e., when K is consistent in probability or not, respectively).
As usual, rate-of-convergence results clarify why a given estimator works well (in
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the sense that a only a small number of samples is needed for reliable estimates) in
certain cases and poorly (sometimes not at all) in others.

We will discuss three estimators here; the first two are well-known, while the third
is novel, and is consistent under much more general conditions. The first part of
the paper will indicate how to derive representation (3), including the constants
a, 13,. and A, for these three estimators. In the final two sections, we discuss lower
bounds on the convergence rates of any possible K -estimator (these kinds of bounds
provide a rigorous measure of the- difficulty of this estimation problem), and then
give a brief illustration of the new estimator applied to data recorded in the primary
motor cortex of awake, behaving monkeys.

2 Convergence rates

All three of the estimators considered here can be naturally written as "M­
estimators," that is,

K(XN' SN) == argmaxVEQm (X) M(XN ,SN )(V),

for some data-dependent function M N == M(XN ,SN ) on Ym(X). Most of the mathe­
matical labor in this section comes down to an application of the standard "delta
method" from the theory of ~v1-estimators [5]: typically the data-dependent (i.e.,
random) functions M N converge in some suitable sense, as N -? 00, to some limit
function M. The asymptotics of the M-estimator are then reduced to a study of 1)
the variability of M N around the limit M and 2) the local differential structure of
M in a neighborhood of the true value of the underlying parameter K. This pro­
gram can be carried out trivially for the first two estimators but is more interesting
for the third (the first two require only the multivariate CLT; the third requires an
infinite-dimensional CLT).

2.1 Spike-triggered averaging

The first estimator, the spike-triggered average, is classical and very intuitive:
KSTA is defined as the sample -mean of the spike-conditional stimulus distribution
p(xl spike); since the spike signal is binary, this is the same as the cross-correlation
between the spike and the stimulus signal. (We assume throughout, without loss
of generality, that p(x) is centered, that is, E(x) == 0.) We will also consider the
following "linear regression" modification:

K LR == AKsTA'
where A is an operator chosen to "divide out" correlations in the stimulus distri­
bution p(x) (A is typically the (pseudo-) inverse of the stimulus correlation matrix,
which we will denote as a 2 (p(x))). The analysis for KSTA and K LR depends only
on a straightforward application of the multivariate central limit theorem' (CLT).

We begin with necessary and sufficient conditions for consistency. We assume
throughout this paper that the stimulus distribution p(x) has finite second mo­
ments; this assumption seems entirely reasonable on physical grounds. Let q be a
random variable with distribution given by

P( ) == ( ~ k~ I Ok) _ f( < X, k1 > )p(< X, k1 »
q - p < X, 1 > SP~ e - ~ ~,JRf« x,k1 »p« x,k1 »

with f as defined in (1) and p(< X, k1 » denoting the one-dimensional projection of
p(x). The expectation of this random variable exists by the finite-variance assump-



tion on p(x). Finally, as usual, we say p(x) is radially symmetric if p(B) == p(UB)
for all Borel sets B and all unitary transformations U.

Theorem 1 ((3(KSTA)). Ifp(x) (resp. p(Alj2x )) is radially symmetric and E(q) i­
0, then (3(KSTA ) == °(resp. (3(KLR) == 0). Conversely, ifp(x) is radially symmetric
and E(q) == 0, then (3 > 0, and if p(x) is not radially symmetric, then there exists
an i for which {3 > 0.

(Note that i is not required to be smooth, or even continuous.) The above suf­
ficiency conditions seem to be somewhat well-known; for example, most of the
sufficiency statement appeared (albeit in somewhat less precise form) in [1]. On
the other hand, the converse is novel, to our knowledge, and is perhaps surpris­
ingly stringent. The first part of the necessity statement will be obvious from the
following discussion of a (and in fact appears implicitly in [1]), while the second
part is a little harder, and seems to require (rather elementary) characteristic func­
tion techniques. The proof proceeds by showing that a distribution is symmetric
iff it has the property that the conditional mean of x is zero on all planar "slices"
< k, x>E B for some k E XI and real Borel set B.

Next we have the rate of convergence:

Theorem 2 (a(KSTA)). Assumep(i),is symmetric normal, with standard devia­
tion a(p). If (3(KSTA) == 0, then N 1j2(KsTA - K) is asymptotically normal with
mean zero (considered as a distribution on the tangent plane of Ym(X) at the true
underlying value K), and

Thus the performance of the spike-triggered average scales directly with the dimen-
~ sion of the ambient space and inversely with E(q), a measure of the asymmetry

of the spike-triggered distribution along k1 . Note that we stated the result un­
der the much stronger condition that p(i) is Gaussian. In this case, the form of a
becomes quite simple, depending on the nonlinearity i only through E(q). The gen­
eral case is proven by identical methods but results in a slightly more complicated
(i-dependent) term in place of a(p). The proof follows by applying the multivari­
ate central limit theorem to the sample mean random vectors drawn ij.d. from
the spike-conditional stimulus distribution, p(xlspike). The proof also supplies the
asymptotic distribution of Error(KsTA) (a noncentral F), which might be useful
for hypothesis testing. The details are quite easy once the mean of this distribution
is identified (as in [1], under the above sufficiency conditions), and we skip them to
save room for more interesting results.

One final note: in stating the above two results, we have been assuming implicitly
that K is one-dimensional (since KSTA clearly returns a single vector, that is, a
one-dimensional subspace of X). Nevertheless, the two theorems extend easily to
the more general case, after Error(KsTA) is redefined to measure angles between
m- and I-dimensional subspaces. (Of course, now E(KsTA) and limN-H:xJ KSTA
depend strongly on the input distribution p(x), even for radi~lly symmetric p(x);
see, e.g., [3] for an analysis of a special case of this effect.)

2.2 Covariance-based methods

The next estimator was introduced in an effort to extend spike-triggered analysis to
the m > 1 case (see, e.g., [3], and references therein). Where KSTA was based on



the first moment of the spike-conditional stimulus distribution p(xlspike), KCORR
is based on the second moment. We define

A 2 -1. A

KCORR == (0-) elg(.6.0-2 ),

where eig(A) denotes the significantly non-zero eigenspace of the operator A, and
.6.~2 is some estimate (typically the usual sample covariance estimate) of the
"difference-covariance" matrix .6.0-2 , defined by

Again, we start with {3:

Theorem 3 ((3(KCORR )). Ifp(x) is Gaussian and

Varp(xlspike) « k, x» =I- Varp(x) (< k, x» \:Ik E E K ,

for some orthogonal basis E K of K, then (3(KCORR) == o. Conversely, if p(x) is
Gaussian and the variance condition is not satisfied for f, then (3 > 0, and if p(x)
is non-Gaussian, then there exists an f for which {3 > o.

As before, the sufficiency is fairly well-known, while the necessity appears to be ­
novel and relies on characteristic function arguments. It is perhaps surprising that
the conditions on p for the consistency of this estimator are even stricter than for the
spike-triggered average. The essential fact here turns out to be that a distribution
is normal iff, after a suitable change of basis, the conditional variance on all planar
"slices" of the distribution is constant.

We have, with Odelia SChwartz, developed a striking inconsistency example which
is worth mentioning here:

Example (Inconsistency of KCORR). There is a nonempty open set of noncon­
stant f and radially symmetric p(x) such that KCORR is asymptotically orthogonal
to K almost surely as N ---7 00. (In fact, the f and p in this set can be taken to be
infinitely differentiable.)

The basic idea is that, for nonnormal p, the spike-triggered variance of < V, x >
depends on f even for v-lk; we leave the details to the reader.

We can derive a similar rate of convergence for these covariance-based methods. To
reduce the notational load, we state the result for m == 1 only; in this case, we can
define AAa-2 to be the (unique and nonzero by assumption) eigenvalue of .6,0-2 .

Theorem 4 (a(KcoRR)). Assume p(x) is independent normal. If (3(KCORR) == 0,
then N 1/ 2 (KcoRR - K) is asymptotically normal with mean zero and

(Again, while AAa-2 will not be exactly zero in practice, it can often be small enough
that the asymptotic error remains prohibitively large for physiologically reasonable
values of N.) The proof proceeds by applying the multivariate central limit the­
orem to the covariance matrix estimator, then examining the first-order Taylor
expansion of the eigenspace map at .6,0-2

; see the longer draft of this paper at
http://www.cns.nyu.edu/r-.;liam for the more general statement and proof.



2.3 Empirical processes techniques

We have seen that the two most common K-estimators are not consistent in gen­
eral; that is, the asymptotic error (3 is bounded away from zero for many (non­
pathological) combinations of p(x), f, and K. We now introduce a new estimator
for which (3 == 0 under very general conditions (without, say, any symmetry or
normality assumptions on p or any symmetry assumptions on f).

The basic idea is that Ki is in a sense a sufficient statistic for i (that is, x - Ki
- spike forms a Markov chain). The data processing inequality suggests that we
could estimate K by maximizing

where DcjJ is a functional with suitable convexity properties, and qN is some estimate
ofp. For example, we could let DcjJ be an information divergence and qN some kernel
estimate, that is, a filtered version of the empirical measure

(see [4] for an independent approach along these lines). This doesn't quite work,
however, because the kernel induces an arbitrary scale; if this scale is larger than
the natural scale of f and p(< V, X » for some V but not others, our estimate will
be biased away from K. Therefore, DcjJ and PN have to be asymptotically scale-free
in some sense.

The simplest approach is to let the kernel width tend to zero as N becomes large; it
is even possible to calculate the optimal rate of kernel shrinkage in N, depending on
the smoothness of f. It also turns out to be helpful to use a bias-corrected version
of MN (V); a standard jackknife correction is sufficient to obtain an estimator which
converges at the standard VN rate. We have:

Theorem 5 «(3(KcP )). lfp has a nonzero density with respect to Lebesgue measure,
f is not constant a.e., and the kernel width goes to zero more slowly than NT-l,
for some r > 0, then {3 == 0 for the kernel estimator KcP •

In other words, this new estimator KcjJ works for very general neurons f and stimulus
distributions p; in particular, K¢ is suitable for application to natural signal data.
Clearly, the condition on f is minimal; we ask only that the neuron be tuned. The
condition on p is quite weak (and can be relaxed further); we are simply ensuring
that we are sampling from all of X, and in particular, the part of X on which the
cell is tuned.

Next we have the rate of convergence; in the following, the "approximation error"
measures the difference between the true information divergence M cP (V) and its
kernel-smoothed version, defined in the obvious way.

Theorem 6 (1 and a for (K¢)). If the approximation error is of order aN,
r > 1, then the jackknifed kernel or histogram versions of KcjJ, with bandwidth
NS, -1 < s < -l/r, converge at an N- l / 2 rate. Moreover, N l / 2 (K¢ - K) is

asymptotically normal, with mean zero and easily calculable a (K¢) .

The methods follow, e.g., example 3.2.12 of [5] - basically, a generalization
of the classical theorem on the asymptotic distribution of the maximum likeli­
hood estimator in regular parametric families. Again, see the longer draft at



http://www.cns.nyu.edu/rvliam for the precise definition of the approximation er­
ror and the full expression for a(K¢).

We have developed an algorithm for the computation of argmaxvMN(V) , and nu­
merical results show that K¢ can be competitive with spike-triggered average or

covariance techniques even in cases in which f3(KSTA) and f3(KCORR) are zero. We
present a brief application of K¢ in section 4.

·3 Lower bounds

Lower bounds for convergence rates provide a rigorous measure of the difficulty of
a given estimation problem, or of the efficiency of a given estimator. We give a few
such results below. The first lower bound is local, in the sense that we assume that
the true parameter is known a priori to be in some small neighborhood of parameter
space. For simplicity, assume for the moment that p(x) is radially symmetric. Recall
that the Hellinger metric between any two densities is defined as (half of) the L 2

distance between the square roots of the densities.

Theorem 7 (Local (Hellinger) lower bound). For simplicity, let p be standard
normal. For any fixed differentiable f, uniformly bounded away from 0 and 1 and
with a uniformly bounded derivative f', and any Hellinger ball F around the true
parameter (f, K),

A ( 11'12 )-1lW-!;e,f N 1
/

2 ikfs~ E(Error(K)) ~ a(p)(Ep ( 1(1 _ f) ))1/2 vctim X - 1.

The second infimum above is taken over all possible estimators k. The right-hand
side plays the role of the inverse Fisher information in the Cramer-Rao bound and
is derived using a similarly local analysis; see [2] for details.

Global bounds are more subtle. We want to prove something like:

liminf aN iI!f sup E(Error(k)) ~ C(E),
N-HXJ K :F(€)

where F(E) is some large parameter set containing, say, all K and all f for which
some relevant measure of tuning is greater than E, aN is the corresponding conver-
gence rate, and C(E) plays the role of a(K) from the previous sections. So far, our
most interesting results in this direction are negative:

Theorem 8 (Information divergences are poor indices of K-difficulty). Let
F(E) be the set of all (K, f) for which the ¢-divergence ((information" between x and
spike is greater than E, that is,

DcjJ(P(Kx, spike); p(spike)p(Kx)) > E.

Then, for E > 0 small enough, for any putative convergence rate aN,

liminf aN iI!f sup E(Error(k)) == 00.
N-'Hx) K :F(€)

In other words, strictly information-theoretic measures of tuning do not provide a
useful index of the difficulty of the K-Iearning problem; the intuitive explanation of
this result is that purely measure-theoretic distance functions, like ¢-divergences,
ignore the topological and vector space structure of the. underlying probability mea­
sures, and it is exactly this structure that determines the convergence rates of any
efficient K -estimator. To put it more simply, the learnability of K depends on the
smoothness of f, just as we saw in the last section.



4 Application to primary motor cortex data

We have applied these new spike-triggered analysis techniques to data collected in
the primary motor cortex (MI) of awake, behaving monkeys in an effort to elucidate
the neural encoding of time-varying hand position signals in MI. This analysis h~s

led to several interesting findings on the encoding properties of these neurons, with
immediate applications to the design of neural prosthetic devices. Here, we have
room to mention only one result: the relevant K for MI cells appear to be largely
one-dimensional. In other words, the conditional firing rate of these neurons, given
a specific time-varying hand path, is well captured by the following model (Fig. 1):
p(spikel£) == f( < ko,£ », where £ represents the two-dimensional hand position
signal in a temporal neighborhood of the current time, ko is a cell-specific affine
functional, and f is a cell-independent scalar function.

20 20

Figure 1: Example }(I<£) functions, computed from two different MI cells, with
rank I< == 2; the x- and y-axes index < k1 , £ > and < k2 , x >, respectively, while
the color axis indicates the value of j (the conditional firing rate given K £), in Hz.
The scale on the x- and y-axes is arbitrary and has been omitted. k was computed
using the q'J-divergence estimator, and j was estimated using an adaptive kernel
within the circular region shown (where sufficient data was available for reliable
estimates). Note that the contours of this function are approximately linear; that
is, }(I<£) ~ fo« ko,£ », where ko is the vector orthogonal to the contour lines
and fa is a suitably chosen scalar function on the line.
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