Bias-Optimal Incremental Problem Solving

Jiirgen Schmidhuber
IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland
j uer gen@dsi a. ch

Abstract

Given is a problem sequence and a probability distribution (the bias) on
programs computing solution candidates. We present an optimally fast
way of incrementally solving each task in the sequence. Bias shifts are
computed by program prefixes that modify the distribution on their suf-
fixes by reusing successful code for previous tasks (stored in non-modifi-
able memory). No tested program gets more runtime than its probability
times the total search time. In illustrative experiments, ours becomes the
first general system to learn a universal solver for arbitrary n disk Tow-
ers of Hanoi tasks (minimal solution size 2™ — 1). It demonstrates the
advantages of incremental learning by profiting from previously solved,
simpler tasks involving samples of a simple context free language.

1 Brief Introduction to Optimal Universal Search

Consider an asymptotically optimal method for tasks with quickly verifiable solutions:

Method 1.1 (LSEARCH) View the n-th binary string (0, 1,00, 01, 10, 11, 000, . . .) as a po-
tential program for a universal Turing machine. Given some problem, for all n do: every
2™ steps on average execute (if possible) one instruction of the n-th program candidate,
until one of the programs has computed a solution.

Given some problem class, if some unknown optimal program p requires f (k) steps to solve
a problem instance of size k, and p happens to be the m-th program in the alphabetical list,
then LseaRcH (for Levin Search) [6] will need at most O(2™ f(k)) = O(f(k)) steps —
the constant factor 2™ may be huge but does not depend on k. Compare [11, 7, 3].

Recently Hutter developed a more complex asymptotically optimal search algorithm for
all well-defined problems [3]. HSEARCH (for Hutter Search) cleverly allocates part of
the total search time for searching the space of proofs to find provably correct candidate
programs with provable upper runtime bounds, and at any given time focuses resources
on those programs with the currently best proven time bounds. Unexpectedly, HSEARCH
manages to reduce the constant slowdown factor to a value of 1 + ¢, where € is an arbitrary
positive constant. Unfortunately, however, the search in proof space introduces an unknown
additive problem class-specific constant slowdown, which again may be huge.

In the real world, constants do matter. In this paper we will use basic concepts of optimal
search to construct an optimal incremental problem solver that at any given time may
exploit experience collected in previous searches for solutions to earlier tasks, to minimize
the constants ignored by nonincremental HSEARCH and LSEARCH.

2 Optimal Ordered Problem Solver (OOPS)

Notation. Unless stated otherwise or obvious, to simplify notation, throughout the paper
newly introduced variables are assumed to be integer-valued and to cover the range clear
from the context. Given some finite or infinite countable alphabet @ = {Q1, @2, ..}, let
Q* denote the set of finite sequences or strings over @), where X is the empty string. We
use the alphabet name’s lower case variant to introduce (possibly variable) strings such
as q,q',q%, ... € Q*; I(q) denotes the number of symbols in string ¢, where I(\) = 0;
qn is the n-th symbol of ¢; g, = Aif m > n and ¢m@m+1 - - - go Otherwise (where
go = go:0 := A). ¢'¢? is the concatenation of ¢' and ¢? (e.g., if ¢ = abc and ¢ = dac
then ¢'q? = abedac).

Consider countable alphabets S and Q. Strings s,s',s2,... € S* represent possible in-
ternal states of a computer; strings q,q',q>,... € Q* represent code or programs for
manipulating states. We focus on S being the set of integers and @ := {1,2,...,n¢g}
representing a set of ng instructions of some programming language (that is, substrings
within states may also encode programs).

R is a set of currently unsolved tasks. Let the variable s(r) € S* denote the current state
of task r € R, with 4-th component s;(r) on a computation tape r (think of a separate
tape for each task). For convenience we combine current state s(r) and current code ¢ in
a single address space, introducing negative and positive addresses ranging from —I(s(r))
to I(q) + 1, defining the content of address i as z(%)(r) := ¢; if 0 < i < I(g) and 2(3)(r) :=
s_i(r) if =I(s(r)) < i < 0. All dynamic task-specific data will be represented at non-
positive addresses. In particular, the current instruction pointer ip(r) := z(a ;»(r))(r) of task
r can be found at (possibly variable) address a,(r) < 0. Furthermore, s(r) also encodes a
modifiable probability distribution p(r) = {p1(r),p2(r), - ., Pngy (r)} (32; pi(r) = 1) on
Q. This variable distribution will be used to select a new instruction in case ip(r) points to
the current topmost address right after the end of the current code q.

Gfrozen > 0 is @ variable address that cannot decrease. Once chosen, the code bias
40:a4,..., Will remain unchangeable forever — it is a (possibly empty) sequence of pro-
grams g'¢? .. ., some of them prewired by the user, others frozen after previous successful
searches for solutions to previous tasks. Given R, the goal is to solve all tasks » € R, by a
program that appropriately uses or extends the current code qo.q,,..., -

We will do this in a bias-optimal fashion, that is, no solution candidate will get much more
search time than it deserves, given some initial probabilistic bias on program space @ *:

Definition 2.1 (BIAS-OPTIMAL SEARCHERS) Givenis a problem class R, a search space
C of solution candidates (where any problem » € R should have a solution in C), a task-
dependent bias in form of conditional probability distributions P(g | =) on the candidates
q € C, and a predefined procedure that creates and tests any given ¢ on any r € R within
time ¢(g,r) (typically unknown in advance). A searcher is n-bias-optimal (n > 1) if for
any maximal total search time T',,, > 0 it is guaranteed to solve any problem r» € R if it
has a solution p € C satisfying t(p,7) < P(p | 7) Traz/n-

Unlike reinforcement learners [4] and heuristics such as Genetic Programming [2], OOPS
(section 2.2) will be n-bias-optimal, where n is a small and acceptable number, such as 8.

2.1 OOPS Prerequisites: Multitasking & Prefix Tracking Through Method “Try”

The Turing machine-based setups for HSEARCH and LSEARCH assume potentially infinite
storage. Hence they may largely ignore questions of storage management. In any practical
system, however, we have to efficiently reuse limited storage. This, and multitasking, is
what the present subsection is about. The recursive method Try below allocates time to

program prefixes, each being tested on multiple tasks simultaneously, such that the sum of
the runtimes of any given prefix, tested on all tasks, does not exceed the total search time
multiplied by the prefix probability (the product of the tape-dependent probabilities of its
previously selected components in Q). Try tracks effects of tested program prefixes, such
as storage modifications (including probability changes) and partially solved task sets, to
reset conditions for subsequent tests of alternative prefix continuations in an optimally ef-
ficient fashion (at most as expensive as the prefix tests themselves). Optimal backtracking
requires that any prolongation of some prefix by some token gets immediately executed.
To allow for efficient undoing of state changes, we use global Boolean variables mark ; (r)
(initially FALSE) for all possible state components s;(r). We initialize time ¢o := 0; prob-
ability P := 1; g-pointer gp := afrozen and state s(r) (including ip(r) and p(r)) with
task-specific information for all task names = in a ring R of tasks. Here the expression
“ring” indicates that the tasks are ordered in cyclic fashion; | R | denotes the number of
tasks in ring R. Given a global search time limit 7', we Try to solve all tasks in Rq, by
using existing code in ¢ = gi.4, and / or by discovering an appropriate prolongation of g:

Method 2.1 (BOOLEAN Try (gp, ro, Ro, to, P)) (returns TRUE or FALSE; 79 € Ryp).
1. Make an empty stack S; set local variables r := ro; R := Ryg;t := to; Done:= FALSE.

WHILE | R |> 0 and ¢ < PT and instruction pointer valid (—I(s(r)) < ip(r) < ¢p)
and instruction valid (1 < z(ip(r))(r) < ng) and no halt condition (e.g., error such as
division by 0) encountered (evaluate conditions in this order until first satisfied, if any) Do:

If possible, interpret / execute token z(ip(r))(r) according to the rules of the given pro-
gramming language (this may modify s(r) including instruction pointer ¢p(r) and distri-
bution p(r), but not ¢), continually increasing ¢ by the consumed time. Whenever the exe-
cution changes some state component s;(r) whose mark;(r) = FALSE, set mark;(r) :=
TRUE and save the previous value §;(r) by pushing the triple (i,r, §;(r)) onto S. Remove
r from R if solved. IF | R |> 0, set » equal to the next task in ring R. ELSE set Done :=
TRUE; @ rozen 1= gp (all tasks solved; new code frozen, if any).

2. Use S to efficiently reset only the modified mark; (k) to FALSE (but do not pop S yet).

3. IFip(r) = ¢gp + 1 (this means an online request for prolongation of the current
prefix through a new token): WHILE Done = FALSE and there is some yet untested
token Z € () (untried since ¢y as value for ggp+1), Set ggp+1 := Z and Done := Try
(gp+ 1,7, R,t, P x p(r)(Z)), where p(r)(Z) is Z’s probability according to current p(r).

4. Use S to efficiently restore only those s;(k) changed since #g, thus also restoring in-
struction pointer ip(ro) and original search distribution p(rq). Return the value of Done.

It is important that instructions whose runtimes are not known in advance can be interrupted
by Try at any time. Essentially, Try conducts a depth-first search in program space, where
the branches of the search tree are program prefixes, and backtracking is triggered once the
sum of the runtimes of the current prefix on all current tasks exceeds the prefix probability
multiplied by the total time limit. A successful Try will solve all tasks, possibly increasing
Gfrozen- INany case Try will completely restore all states of all tasks. Tracking / undoing
effects of prefixes essentially does not cost more than their execution. So the n in Def. 2.1
of n-bias-optimality is not greatly affected by backtracking: ignoring hardware-specific
overhead, we lose at most a factor 2. An efficient iterative (non-recursive) version of Try
for a broad variety of initial programming languages was implemented in C.

2.2 OOPS For Finding Universal Solvers

Now suppose there is an ordered sequence of tasks r1,7,.... Task r; may or may not
depend on solutions for r; (i, = 1,2,...,j > 4). For instance, task r; may be to find a

faster way through a maze than the one found during the search for a solution to task r ;_;.

We are searching for a single program solving all tasks encountered so far (see [9] for vari-
ants of this setup). Inductively suppose we have solved the first n tasks through programs
stored below address a ¢,....n, and that the most recently found program starting at address
Qlast < Qfrozen actually solves all of them, possibly using information conveyed by earlier
programs. To find a program solving the first n + 1 tasks, cops invokes Try as follows
(using set notation for ring R):

Method 2.2 (oops (n+1)) Initialize T := 2; gp := @ frozen-
1. Set R = {rp41} and ip(rpn41) := Giase. 1F Try (gp, rnt1, R, 0, 0.5) then exit.

2.IFn+1>Tgoto3.SetR = {ry,r2,..., ny1}; Setlocal variable a := a¢rozen + 1;
forallr € R setip(r) := a. IF Try (gp, rn+1, R,0,0.5) set aj,s; := a and exit.

3.SetT :=2T,and goto 1.

That is, we spend roughly equal time on two simultaneous searches. The second (step 2)
considers all tasks and all prefixes. The first (step 1), however, focuses only on task n + 1
and the most recent prefix and its possible continuations. In particular, start address a ;4:
does not increase as long as new tasks can be solved by prolonging qa,,,, a0z, - WHY IS
this justified? A bit of thought shows that it is impossible for the most recent code starting
at a;,,; to request any additional tokens that could harm its performance on previous tasks.
We already inductively know that all of its prolongations will solve all tasks up to n.

Therefore, given tasks rq,72,..., we first initialize a;,4; then for i := 1,2,... invoke
00Ps(i) to find programs starting at (possibly increasing) address a4, €ach solving all
tasks so far, possibly eventually discovering a universal solver for all tasks in the sequence.
As address a;, ¢ increases for the n-th time, ¢™ is defined as the program starting at a4 ’S
old value and ending right before its new value. Clearly, ¢™ (m > n) may exploit ¢™.

Optimality. ooPs not only is asymptotically optimal in Levin’s sense [6] (see Method 1.1),
but also near bias-optimal (Def. 2.1). To see this, consider a program p solving problem
r; within k steps, given current code bias qo.q;,,,., and a;.s¢. Denote p’s probability by
P(p). A bias-optimal solver would solve r; within at most k/P(p) steps. We observe that
oops will solve r; within at most 23k / P(p) steps, ignoring overhead: a factor 2 might get
lost for allocating half the search time to prolongations of the most recent code, another
factor 2 for the incremental doubling of T' (necessary because we do not know in advance
the best value of T'), and another factor 2 for Try’s resets of states and tasks. So the method
is 8-bias-optimal (ignoring hardware-specific overhead) with respect to the current task.

Our only bias shifts are due to freezing programs once they have solved a problem. That
is, unlike the learning rate-based bias shifts of ADAPTIVE LSEARCH [10], those of OOPS
do not reduce probabilities of programs that were meaningful and executable before the
addition of any new ¢*. Only formerly meaningless, interrupted programs trying to access
code for earlier solutions when there weren’t any suddenly may become prolongable and
successful, once some solutions to earlier tasks have been stored.

Hopefully we have P(p) >> P(p'), where p’ is among the most probable fast solvers of
r; that do not use previously found code. For instance, p may be rather short and likely
because it uses information conveyed by earlier found programs stored below a ¢rozen.
E.g., p may call an earlier stored ¢* as a subprogram. Or maybe p is a short and fast
program that copies ¢* into state s(r;), then modifies the copy just a little bit to obtain g,
then successfully applies ¢ to ;. If p' is not many times faster than p, then oops will
in general suffer from a much smaller constant slowdown factor than LSEARCH, reflecting
the extent to which solutions to successive tasks do share useful mutual information.

Unlike nonincremental LSEARCH and HSEARCH, which do not require online-generated
programs for their aymptotic optimality properties, oops does depend on such programs:
The currently tested prefix may temporarily rewrite the search procedure by invoking pre-
viously frozen code that redefines the probability distribution on its suffixes, based on ex-
perience ignored by LSEARCH & HSEARCH (metasearching & metalearning!).

As we are solving more and more tasks, thus collecting and freezing more and more ¢ ¢, it
will generally become harder and harder to identify and address and copy-edit particular
useful code segments within the earlier solutions. As a consequence we expect that much
of the knowledge embodied by certain ¢7 actually will be about how to access and edit and
use programs ¢ (i < j) previously stored below ¢7.

3 A Particular Initial Programming L anguage

The efficient search and backtracking mechanism described in section 2.1 is not aware of
the nature of the particular programming language given by @, the set of initial instructions
for modifying states. The language could be list-oriented such as LISP, or based on matrix
operations for neural network-like parallel architectures, etc. For the experiments we wrote
an interpreter for an exemplary, stack-based, universal programming language inspired by
FORTH [8], whose disciples praise its beauty and the compactness of its programs.

Each task’s tape holds its state: various stack-like data structures represented as sequences
of integers, including a data stack ds (with stack pointer dp) for function arguments, an
auxiliary data stack Ds, a function stack fns of entries describing (possibly recursive) func-
tions defined by the system itself, a callstack cs (with stack pointer cp and top entry cs[cp])
for calling functions, where local variable ¢s[cp].ip is the current instruction pointer, and
base pointer cs[cp].dp points into ds below the values considered as arguments of the most
recent function call: Any instruction of the form inst (z 4, ..., x,) expects its n arguments
on top of ds, and replaces them by its return values. Illegal use of any instruction will cause
the currently tested program prefix to halt. In particular, it is illegal to set variables (such
as stack pointers or instruction pointers) to values outside their prewired ranges, or to pop
empty stacks, or to divide by 0, or to call nonexistent functions, or to change probabilities
of nonexistent tokens, etc. Try (Section 2.1) will interrupt prefixes as soon as theirt > T'P.

Instructions. We defined 68 instructions, such as oldq(n) for calling the n-th previously
found program ¢™, or getq(n) for making a copy of ¢™ on stack ds (e.g., to edit it with
additional instructions). Lack of space prohibits to explain all instructions (see [9]) — we
have to limit ourselves to the few appearing in solutions found in the experiments, using
readable names instead of their numbers: Instruction c1() returns constant 1. Similarly
for c2(), ..., ¢5(). dec(x) returns z — 1; by2(x) returns 2z; grt(x,y) returns 1 if > y,
otherwise 0; delD() decrements stack pointer Dp of Ds; fromD() returns the top of Ds;
toD() pushes the top entry of ds onto Ds; cpn(n) copies the n topmost ds entries onto the
top of ds, increasing dp by n; cpnb(n) copies n ds entries above the cs[cp].dp-th ds entry
onto the top of ds; exec(n) interprets n as the number of an instruction and executes it;
bsf(n) considers the entries on stack ds above its cs[cp].dp + n-th entry as code and uses
callstack cs to call this code (code is executed by step 1 of Try (Section 2.1), one instruction
at a time; the instruction ret() causes a return to the address of the next instruction right
after the calling instruction). Given n input arguments on ds, instruction defnp() pushes
onto ds the begin of a definition of a procedure with n inputs; this procedure returns if
its topmost input is 0, otherwise decrements it. callp() pushes onto ds code for a call of
the most recently defined function / procedure. Both defnp and callp also push code for
making a fresh copy of the inputs of the most recently defined code, expected on top of
ds. endnp() pushes code for returning from the current call, then calls the code generated
so far on stack ds above the n inputs, applying the code to a copy of the inputs on top
of ds. boostq(i) sequentially goes through all tokens of the i-th self-discovered frozen

program, boosting each token’s probability by adding n ¢ to its enumerator and also to the
denominator shared by all instruction probabilities — denominator and all numerators are
stored on tape, defining distribution p(r).

Initialization. Given any task, we add task-specific instructions. We start with a maximum
entropy distribution on the > 68 @ ; (all numerators set to 1), then insert substantial prior
bias by assigning the lowest (easily computable) instruction numbers to the task-specific
instructions, and by boosting (see above) the initial probabilities of appropriate “small
number pushers™ (such as c1, c2, c¢3) that push onto ds the numbers of the task-specific
instructions, such that they become executable as part of code on ds. We also boost the
probabilities of the simple arithmetic instructions by2 and dec, such that the system can
easily create other integers from the probable ones (e.g., code sequence (c3 by2 by2 dec)
will return integer 11). Finally we also boost boostq.

4 Experiments. Towersof Hanoi and Context-Free Symmetry

Given are n disks of n different sizes, stacked in decreasing size on the first of three pegs.
Moving some peg’s top disk to the top of another (possibly empty) peg, one disk at a time,
but never a larger disk onto a smaller, transfer all disks to the third peg. Remarkably, the
fastest way of solving this famous problem requires 2™ — 1 moves (n > 0).

Untrained humans find it hard to solve instances n > 6. Anderson [1] applied traditional
reinforcement learning methods and was able to solve instances up to n = 3, solvable
within at most 7 moves. Langley [5] used learning production systems and was able to solve
Hanoi instances up to n = 5, solvable within at most 31 moves. Traditional nonlearning
planning procedures systematically explore all possible move combinations. They also fail
to solve Hanoi problem instances with n > 15, due to the exploding search space (Jana
Koehler, IBM Research, personal communication, 2002). 0oPs, however, is searching in
program space instead of raw solution space. Therefore, in principle it should be able to
solve arbitrary instances by discovering the problem’s elegant recursive solution: given n
and three pegs S, A, D (source peg, auxiliary peg, destination peg), define procedure

Method 4.1 (HANOI(S,A,D,n)) IF n = 0 exit. Call HANOI(S, D, A, n-1); move top disk
from S to D; call HANOI(A, S, D, n-1).

The n-th task is to solve all Hanoi instances up to instance n. We represent the dynamic
environment for task n on the n-th task tape, allocating n+1 addresses for each peg, to store
its current disk positions and a pointer to its top disk (O if there isn’t any). We represent
pegs S, A, D by numbers 1, 2, 3, respectively. That is, given an instance of size n, we push
onto ds the values 1, 2, 3, n. By doing so we insert substantial, nontrivial prior knowledge
about problem size and the fact that it is useful to represent each peg by a symbol.

We add three instructions to the 68 instructions of our FORTH-like programming language:
mvdsk() assumes that S, A, D are represented by the first three elements on ds above the
current base pointer cs[cp].dp, and moves a disk from peg S to peg D. Instruction xSA()
exchanges the representations of S and A, xAD() those of A and D (combinations may cre-
ate arbitrary peg patterns). Illegal moves cause the current program prefix to halt. Overall
success is easily verifiable since our objective is achieved once the first two pegs are empty.

Within reasonable time (a week) on an off-the-shelf personal computer (1.5 GHz) the sys-
tem was not able to solve instances involving more than 3 disks. This gives us a welcome
opportunity to demonstrate its incremental learning abilities: we first trained it on an ad-
ditional, easier task, to teach it something about recursion, hoping that this would help to
solve the Hanoi problem as well. For this purpose we used a seemingly unrelated symme-
try problem based on the context free language {1™2"}: given input n on the data stack
ds, the goal is to place symbols on the auxiliary stack Ds such that the 2n topmost elements

are n 1’s followed by n 2’s. We add two more instructions to the initial programming lan-
guage: instruction 1toD() pushes 1 onto Ds, instruction 2toD() pushes 2. Now we have a
total of five task-specific instructions (including those for Hanoi), with instruction numbers
1, 2,3,4,5, for 1toD, 2toD, mvdsk, xSA, XAD, respectively.

So we first boost (Section 3) instructions c1, c2 for the first training phase where the n-th
task (n = 1,...,30) is to solve all symmetry problem instances up to n. Then we undo
the symmetry-specific boosts of c1, c2 and boost instead the Hanoi-specific “instruction
number pushers” ¢3, ¢4, ¢5 for the subsequent training phase where the n-th task (again
n =1,...,30) is to solve all Hanoi instances up to n.

Results. Within roughly 0.3 days, oops found and froze code solving the symmetry prob-
lem. Within 2 more days it also found a universal Hanoi solver, exploiting the benefits of
incremental learning ignored by nonincremental HSEARCH and LSEARCH. It is instructive
to study the sequence of intermediate solutions. In what follows we will transform inte-
ger sequences discovered by ooPs back into readable programs (to fully understand them,
however, one needs to know all side effects, and which instruction has got which number).

For the symmetry problem, within less than a second, oops found silly but working code
for n = 1. Within less than 1 hour it had solved the 2nd, 3rd, 4th, and 5th instances,
always simply prolonging the previous code without changing the start address a ;4. The
code found so far was unelegant: (defnp 2toD grt ¢2 ¢2 endnp boostq delD delD bsf 2toD
fromD delD delD delD fromD bsf by2 bsf by2 fromD delD delD fromD cpnb bsf). But it
does solve all of the first 5 instances. Finally, after 0.3 days, 0OPs had created and tested a
new, elegant, recursive program (no prolongation of the previous one) with a new increased
start address a;45, Solving all instances up to 6: (defnp ¢l calltp c2 endnp). That is, it was
cheaper to solve all instances up to 6 by discovering and applying this new program to all
instances so far, than just prolonging old code on instance 6 only. In fact, the program turns
out to be a universal symmetry problem solver. On the stack, it constructs a 1-argument
procedure that returns nothing if its input argument is 0, otherwise calls the instruction
1toD whose code is 1, then calls itself with a decremented input argument, then calls 2toD
whose code is 2, then returns. Using this program, within an additional 20 milliseconds,
0o0Ps had also solved the remaining 24 symmetry tasks up to n. = 30.

Then ooPs switched to the Hanoi problem. 1 ms later it had found trivial code for n = 1:
(mvdsk). After a day or so it had found fresh yet bizarre code (new start address a ;,s¢) for
n = 1,2: (c4 c3 cpn c4 by2 c3 by2 exec). Finally, after 3 days it had found fresh code (new
ajqse) forn = 1,2, 3: (c3 dec boostq defnp ¢4 calltp ¢3 ¢5 calltp endnp). This already is an
optimal universal Hanoi solver. Therefore, within 1 additional day oops was able to solve
the remaining 27 tasks for n up to 30, reusing the same program q,,,:a;..., adain and
again. Recall that the optimal solution for n = 30 takes > 10° mvdsk operations, and that
for each mvdsk several other instructions need to be executed as well!

The final Hanoi solution profits from the earlier recursive solution to the symmetry prob-
lem. How? The prefix (c3 dec boostq) (probability 0.003) temporarily rewrites the search
procedure (this illustrates the benefits of metasearching!) by exploiting previous code:
Instruction c3 pushes 3; dec decrements this; boostq takes the result 2 as an argument and
thus boosts the probabilities of all components of the 2nd frozen program, which happens
to be the previously found universal symmetry solver. This leads to an online bias shift
that greatly increases the probability that defnp, calltp, endnp, will appear in the suffix of
the online-generated program. These instructions in turn are helpful for building (on the
data stack ds) the double-recursive procedure generated by the suffix (defnp c4 calltp ¢3 c5
calltp endnp), which essentially constructs a 4-argument procedure that returns nothing if
its input argument is 0, otherwise decrements the top input argument, calls the instruction
XxAD whose code is 4, then calls itself, then calls mvdsk whose code is 5, then calls xSA
whose code is 3, then calls itself again, then returns (compare the standard Hanoi solution).

The total probability of the final solution, given the previous codes, is 0.325x10 —1°, On the
other hand, the probability of the essential Hanoi code (defnp c4 calltp ¢3 c5 calltp endnp),
given nothing, is only 4 = 10~4, which explains why it was not quickly found without the
help of an easier task. So in this particular setup the incremental training due to the simple
recursion for the symmetry problem indeed provided useful training for the more complex
Hanoi recursion, speeding up the search by a factor of roughly 1000.

The entire 4 day search tested 93,994,568,009 prefixes corresponding to 345,450,362,522
instructions costing 678,634,413,962 time steps (some instructions cost more than 1 step,
in particular, those making copies of strings with length > 1, or those increasing the prob-
abilities of more than one instruction). Search time of an optimal solver is a natural
measure of initial bias. Clearly, most tested prefixes are short — they either halt or get
interrupted soon. Still, some programs do run for a long time; the longest measured run-
time exceeded 30 billion steps. The stacks S of recursive invocations of Try for storage
management (Section 2.1) collectively never held more than 20,000 elements though.

Different initial bias will yield different results. E.g., we could set to zero the initial prob-
abilities of most of the 73 initial instructions (most are unnecessary for our two problem
classes), and then solve all 2 x 30 tasks more quickly (at the expense of obtaining a non-
universal initial programming language). The point of this experimental section, however,
is not to find the most reasonable initial bias for particular problems, but to illustrate the
general functionality of the first general near-bias-optimal incremental learner. In ongo-
ing research we are equipping 0opPs with neural network primitives and are applying it to
robotics. Since oops will scale to larger problems in essentially unbeatable fashion, the
hardware speed-up factor of 109 expected for the next 30 years appears promising.

References

[1] C. W. Anderson. Learning and Problem Solving with Multilayer Connectionist Systems. PhD
thesis, University of Massachusetts, Dept. of Comp. and Inf. Sci., 1986.

[2] N. L. Cramer. A representation for the adaptive generation of simple sequential programs. In
J.J. Grefenstette, editor, Proceedings of an International Conference on Genetic Algorithms
and Their Applications, Carnegie-Mellon University, July 24-26, 1985, Hillsdale NJ, 1985.
Lawrence Erlbaum Associates.

[3] M. Hutter. The fastest and shortest algorithm for all well-defined problems. International
Journal of Foundations of Computer Science, 13(3):431-443, 2002.

[4] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: a survey. Journal of
Al research, 4:237-285, 1996.

[5] P. Langley. Learning to search: from weak methods to domain-specific heuristics. Cognitive
Science, 9:217-260, 1985.

[6] L. A. Levin. Universal sequential search problems. Problems of Information Transmission,
9(3):265-266, 1973.

[7] M. Li and P. M. B. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications
(2nd edition). Springer, 1997.

[8] C. H. Moore and G. C. Leach. FORTH - a language for interactive computing, 1970.
http://www.ultratechnology.com.

[9] J. Schmidhuber. Optimal ordered problem solver. Technical Report IDSIA-12-02,
arXiv:cs.Al/0207097 v1, IDSIA, Manno-Lugano, Switzerland, July 2002.

[10] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm,
adaptive Levin search, and incremental self-improvement. Machine Learning, 28:105-130,
1997.

[11] R.J. Solomonoff. An application of algorithmic probability to problems in artificial intelligence.
In L. N. Kanal and J. F. Lemmer, editors, Uncertainty in Artifi cial Intelligence, pages 473-491.
Elsevier Science Publishers, 1986.

