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Abstract

We consider loopy belief propagation for approximate inference in prob-
abilistic graphical models. A limitation of the standard algorithm is that
clique marginals are computed as if there were no loops in the graph.
To overcome this limitation, we introduce fractional belief propagation.
Fractional belief propagation is formulated in terms of a family of ap-
proximate free energies, which includes the Bethe free energy and the
naive mean-field free as special cases. Using the linear response correc-
tion of the clique marginals, the scale parameters can be tuned. Simula-
tion results illustrate the potential merits of the approach.

1 Introduction

Probabilistic graphical models are powerful tools for learning and reasoning in domains
with uncertainty. Unfortunately, inference in large, complex graphical models is computa-
tionally intractable. Therefore, approximate inference methods are needed. Basically, one
can distinguish between to types of methods, stochastic sampling methods and determinis-
tic methods. One of methods in the latter class is Pearl’s loopy belief propagation [1]. This
method is increasingly gaining interest since its successful applications to turbo-codes. Un-
til recently, a disadvantage of the method was its heuristic character, and the absence of a
converge guarantee. Often, the algorithm gives good solutions, but sometimes the algo-
rithm fails to converge. However, Yedidia et al. [2] showed that the fixed points of loopy
belief propagation are actually stationary points of the Bethe free energy from statistical
physics. This does not only give the algorithm a firm theoretical basis, but it also solves
the convergence problem by the existence of an objective function which can be minimized
directly [3]. Belief propagation is generalized in several directions. Minka’s expectation
propagation [4] is a generalization that makes the method applicable to Bayesian learning.
Yedidia et al. [2] introduced the Kikuchi free energy in the graphical models community,
which can be considered as a higher order truncation of a systematic expansion of the ex-
act free energy using larger clusters. They also developed an associated generalized belief
propagation algorithm. In this paper, we propose another direction which yields possibili-
ties to improve upon loopy belief propagation, without resorting to larger clusters.

This paper is organized as follows. In section 2 we define the inference problem. In sec-
tion 3 we shortly review approximate inference by loopy belief propagation and discuss an
inherent limitation of this method. This motivates us to generalize upon loopy belief prop-
agation. We do so by formulating a new class of approximate free energies in section 4. In



section 5 we consider the fixed point equations and formulate the fractional belief propa-
gation algorithm. In section 6 we will use linear response estimates to tune the parameters
in the method. Simulation results are presented in section 7. In section 8 we end with the
conclusion.

2 Inferencein graphical models

Our starting point is a probabilistic model P on a set of discrete variables z = z1,... ,z,
in a finite domain. The joint distribution P(z) is assumed to be proportional to a product
of clique potentials

P(z) o [ [ Yalza) , @

where each « refers to a subset of the n nodes in the model. A typical example that we will
consider later in the paper is the Boltzmann machine with binary units (z; = +1),

P(z) eXP(Z wi;T;T; + Z9k$k) ; )
(4:9) k

where the sum is over connected pairs (7, j). The right hand side can be viewed as product
of potentials 1;; (z;;) = exp(wi;z;z; + (Il\lf—\)am + U\l,Tejxj)), where N; is the set of
edges that contain node 7. The typical task that we try to perform is to compute the marginal
single node distributions P(x;). Basically, the computation requires the summation over all
remaining variables z\z;. In small networks, this summation can be performed explicitly.
In large networks, the complexity of computation depends on the underlying graphical
structure of the model, and is exponential in the maximal clique size of the triangulated
moralized graph [5]. This may lead to intractable models, even if the clusters z, are small.
When the model is intractable, one has to resort to approximate methods.

3 Loopy belief propagation in Boltzmann machines

A nowadays popular approximate method is loopy belief propagation. In this section, we
will shortly review of this method. Next we will discuss one of its inherent limitations,
which motivates us to propose a possible way to overcome this limitation. For simplicity,
we restrict this section to Boltzmann machines.

The goal is to compute pair marginals P(z;;) of connected nodes. Loopy belief propaga-
tion computes approximating pair marginals (;;(x;;) by applying the belief propagation
algorithm for trees to loopy graphs, i.e., it computes messages according to

Mi—;(T;) o ZeXp(wij-Tz’xj)‘Z’ij (zi) 5 )
in which gZa,-j are the incoming messages to node ¢ except from node j,
ij(zi) = exp(Oizs) [[ muoilzi) - 4
kEN;\j

If the procedure converges (which is not guaranteed in loopy graphs), the resulting approx-
imating pair marginals are

Qij (i) oc exp(wijwizs)dis(x:)$js(5) - (5)
In general, the exact pair marginals will be of the form
Pij(zij) o exp(ws) zix;)dij (i) dji(x;) (6)



which has an effective interaction werf In the case of a tree, wEff = w;;. With loops in the
graph, however, the loops will contrlbute to w“ , and the result will in general be dlfferent

from Wi If we compare (6) with (5), we see that loopy belief propagation assumes w
wjy;, ignoring contributions from loops.

Now suppose we would know ngf in advance, then a better approximation could be ex-
pected if we could model approximate pair marginals of the form

Wi 4 ~ ~
Qij(wij) o eXP(ﬁ%W)@j(%)%i(%) , (1)
ij
where ¢;; = w;; /w . The (]5,] are to be determined by some propagation algorithm.

In the next sections, we generalize upon the above idea and introduce fractional belief
propagation as a family of loopy belief propagation-like algorithms parameterized by scale
parameters ¢ = {c, }. The resulting approximating clique marginals will be of the form

Qa(zq) x wa('ma)l/ca H ‘Z;z(xz)a (8)
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where N, is the set of nodes in clique a.. The issue of how to set the parameters ¢'is subject
of section 6.

4 A family of approximate free energies

The new class of approximating methods will be formulated via a new class of approximat-
ing free energies. The exact free energy of a model with clique potentials {zpa} is

Fryy (P ——ZP Zlog¢a T +ZP )log P(x 9)
It is well known that the joint dlstrlbutlon P can be recovered by minimization of the free
energy
P = argmin F{%}(P) (10)
P

under the constraint 3 P(x) = 1. The idea is now to construct an approximate free en-

ergy FAPPTOX(Q) and compute its minimum Q. Then @ is interpreted as an approximation
of P.

A popular approximate free energy is based on the Bethe assumption, which basically states
that @) is approximately tree-like,

HQa Ta HQ R (11)

in which N; are the cliques « that contain 4. ThIS assumption is exact if the factor graph [6]
of the model is a tree. Substitution of the tree-assumption into the free energy leads to the
well-known Bethe free energy

PR (@2 0) = = 323 Qa(ra) logva(ea)
+) ) Qalza)log Q(za +Z A= INiD D Qilwi)log Q) ,  (12)

which is to be minimized under normalization constraints » 3  Q(z,) = 1 and
D, Q:(z;) = 1 and the marginalization constraints Z%\i Qo(zs) = Qi(x;) fori € N,,.



It can be shown that minima of the Bethe free energy are fixed points of the loopy belief
propagation algorithm [2].

In our proposal, we generalize upon the Bethe assumption, and make the parameterized
assumption

HQa Ta C“HQ Yol (13)

inwhich ¢; = 1/|Ny| 3_,cn, ca- The intuition behind this assumption is that we replace
each v, (z4) by a factor Q(z4)° . The term with single node marginals is constructed to
deal with overcounted terms. Substitution of (13) into the free energy leads to the approxi-
mate free energy

F{llla ({Qa,Q } ZZQa T Inga(xa)
+ Y ca Y Qal®a)logQza) + > (1 —ci|Ni) Y Qi(wi)log Qi(zi) , (14)

which is also parameterized by & This class of free energies trivially contains the Bethe
free energy (c, = 1). In addition, it includes the variational mean field free energy, con-
ventionally writtenas FM" = =3 3 [T, Qilogva+3; 3, Qilog Q; asalimiting
case forc, = ¢ > © (|mpIy|ng an effective interaction of strength zero). If this limit is
taken in (14), terms linear in ¢ will dominate and act as a penalty term for non-factorial
entropies. Consequently, the distributions will be constrained to be completely factorized,
Qa = [[;en, Qi- Under these constraints, the remaining terms reduce to the conventional

representation of FMF Thirdly, it contains the recently derived free energy to upper bound
the log partition function [7]. This one is recovered if, for pair-wise cliques, the c;;’s are set
to the edge appearance probabilities in the so-called spanning tree polytope of the graph.
These requirements imply that 0 < ¢;; < 1.

5 Fractional belief propagation

In this section we will use the fixed point equations to generalize Pearl’s algorithm to
fractional belief propagation as a heuristic to minimize F¢. Here, we do not worry too
much about guaranteed convergence. If convergence is a problem, one can always resort
to direct minimization of F¢ using, e.g., Yuille’s CCCP algorithm [3]. If standard belief
propagation converges, its solution is guaranteed to be a local minimum of FBethe [8]. We
expect a similar situation for F¢,

Fixed point equations from F¢ are derived in the same way as in [2]. We obtain

Qa(wa) X "uba a 1/00‘ H H mBz maz(wz)l_l/ca ’ (15)
1€Nq BEN;\
Qi(xi) o []mailz:) , (16)
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Mei(T;) = Qi) Mei(T;) - ()

and we notice that Q4 (z,) has indeed the functional dependency of v, as desired in (8).
Inspired by Pearl’s loopy belief propagation algorithm, we use the above equations to for-
mulate fractional belief propagation BP(¢) (see Algorithm 1) 2.

BP(1),i.e. withall ¢, = 1, is equivalent to standard loopy belief propagation



Algorithm 1 Fractional Belief Propagation BP(¢)
1: initialize(mas, Qi o< [, mMai )
2: repeat
3: forall ado
update @, according to (15).
update m;, ¢ € N, according to (17) using the new @, and the old @;.
update Q;, ¢ € N, by marginalization of Q.
end for
8: until convergence criterion is met (or maximum number of iterations is exceeded)
9: return {Qq,Q;} (or failure)

No gk

As a theoretical footnote we mention a different (generally more greedy) c-algorithm,
which has the same fixed points as BP(¢). This algorithm is similar to Algorithm 1, except
that (1) the update of ), (in line 4) is to be taken with ¢, = 1, as in in standard belief prop-
agation and (2) the update of the marginals @; (in line 6) is to be performed by minimizing
the divergence Dy /., (Qa;, [ [;cn, Qi) Where

D.(P,Q) = 1_6< ZP ) (18)

with the limiting cases

PQ) = ZP(x) log% and Dg(P,Q) = ZQ i; ) (19)

rather than by marginalization (which corresponds to minimizing D, which is the equal to
the usual K L divergence). The D.’s are known as the a-divergences [9] where e = %(a-f— 1)
and —1 < a < 1. The minimization of the @;’s using Dq leads to the well known mean
field equations.

6 Tuning ¢ using linear response theory

Now the question is, how do we set the parameters ¢? The idea is as follows, if we could
have access to the true marginals P, (z,) = P(z4), we could optimize & by minimizing,
for example,

Cost(@) = - KL(Fa @2 = ¥ 3 Palea)log s . (20

in which we labeled @ by ¢ to emphasize its dependency on the scale parameters. Unfor-
tunately, we do not have access to the true pair marginals, but if we would have estimates

ng that improve upon QZ, we can compute new parameters & such that Q¢ is closer to

PZ. However, with the new parameters the estimates 155 will be changed as well, and this
procedure should be iterated.

In this paper, we use the linear response theory [10] to improve upon Q€. For simplicity,
we restrict ourselves to Boltzmann machines with binary units. Applying linear response
theory to BP(&) in Boltzmann machines yields the following linear response estimates for
the pair marginals,

z; 8Q% (x:) ‘

2~ 09, (1)

CIR (i) = Qi) Q5 (x5) +



Algorithm 2 Tuning & by linear response

1: initialize(t = 1,¢; = 1)

2: repeat

3. setstep-size n;

4:  compute the linear response estimates Q;?;‘._LR asin (21)
5. compute ¢4 as in (22).

6: sett=t+1

7. until convergence criterion is met

8: return{ f;*.,th}

In [10], it is argued that if Q%(z;;) is correct up to O(e), the error in the linear response
estimate is O(e2). Linear response theory has been applied previously to improve upon
pair marginals (or correlations) in the naive mean field approximation [11] and in loopy
belief propagation [12].

To iteratively compute new scaling parameters from the linear response corrections we use
a gradient descent like algorithm

Ga1 =G —mVz Y KLQE™™,QF) (22)
(4)
with a time dependent step-size parameter 7.

By iteratively computing the linear response marginals, and adapting the scale parameters
in the gradient descent direction, we can optimize &, see Algorithm 2. Each linear response
estimate can be computed numerically by applying BP(¢) to a Boltzmann machine with
parameters (w, 6) and (w, 8 + A;). Partial derivatives with respect to ¢;;, required for the
gradient in (22), can be computed numerically by rerunning fractional belief propagation
with parameters ¢ + Ac;;. In this procedure the computation cost to update ¢ requires
O(N) + O(E) times the cost of BP(¢), where N is the number of nodes and E is the
number of edges.

7 Numerical results

We applied the method to a Boltzmann machine in which the nodes are connected according
to a 3 x 3 square grid with periodic boundary conditions. The weights in the model were
drawn from the binary distribution w;; € {—0.5,0.5} with equal probability. Thresholds
were drawn according to #; ~ A/(0,0.1) We generated 20 networks, and compared results
of standard loopy belief propagation to results obtained by fractional belief propagation
where the scale parameters were obtained by Algorithm 2.

In the experiment the step size was set to be n; = 1/log(1 + t). The iterations were
stopped if the maximum change in 1/¢;; was less than 10~4, or if the number of iterations
exceeded t = 100. Throughout the procedure, fractional belief propagations were ran
with convergence criterion of maximal difference of 10~8 between messages in successive
iterations (one iteration is one cycle over all weights). In our experiment, all (fractional)
belief propagation runs converged. The number of updates of ¢ ranged between 20 and
80. After optimization we found (inverse) scale parameters ranging from 1/¢;; ~ —0.5 to
1/61']' =~ 2.

Results are plotted in figure 1. In the left panel, it can be seen that the procedure can lead
to significant improvements. In these experiments, the solutions obtained by optimized
BP(&) are consistently 10 to 100 times better in averaged K L, than the ones obtained by
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Figure 1: Left: Scatter plots of averaged KL between exact and approximated pair
marginals obtained by the optimized fractional belief propagation (B P(&)) versus the ones
obtained by standard belief propagation (BP(1)). Each point in the plot is the result of
one instantiation of the network. Right: approximated single-node means for BP(1) and
optimized B P(¢) against the exact single node means. This plot is for the network where
BP(1) had the worst performance (i.e. corresponding to the point in the left panel with
highest < K L(P;;, QL) >).

Jr ¥ g

standard BP(1). The averaged K L is defined as

1
(KL(Pij, Qi) = % > KL(Py, Qi) -
(i5)

In the right panel, approximations of single-node means are plotted for the case where
BP(1) had the worst performance. Here we see that procedure can lead to quite precise
estimates of the means, even if the quality of solutions by obtained BP(1) is very poor.
Here, it should be noticed that the linear response correction does not alter the estimated
means [12]. In other words, the improvement in quality of the means is a result of optimized
¢, and not of the linear response correction.

(23)

8 Conclusions

In this paper, we introduced fractional belief propagation as a family of approximating in-
ference methods that generalize upon loopy belief propagation without resorting to larger
clusters. The approximations are parameterized by scale parameters ¢, which are moti-
vated to better model the effective interactions due to the effect of loops in the graph. The
approximations are formulated in terms of approximating free energies. This family of ap-
proximating free energies includes as special cases the Bethe free energy, the mean field
free energy, and also the free energy approximation that provides an upper bound on the
log partition function, developed in [7].

In order to apply fractional belief propagation, the scale parameters have to be tuned. In
this paper, we demonstrated in toy problems for Boltzmann machines that it is possible to
tune the scale parameters using linear response theory. Results show that considerable im-
provements can be obtained, even if standard loopy belief propagation is of poor quality. In
principle, the method is applicable to larger and more general graphical models. However,



how to make the tuning of scale parameters practically feasible in such models is still to be
explored.
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