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Abstract

Time difference of arrival (TDOA) is commonly used to estimate the az-
imuth of a source in a microphone array. The most common methods
to estimate TDOA are based on finding extrema in generalized cross-
correlation waveforms. In this paper we apply microphone array tech-
niques to a manikin head. By considering the entire cross-correlation
waveform we achieve azimuth prediction accuracy that exceeds extrema
locating methods. We do so by quantizing the azimuthal angle and
treating the prediction problem as a multiclass categorization task. We
demonstrate the merits of our approach by evaluating the various ap-
proaches on Sony’s AIBO robot.

1 Introduction

In this paper we describe and evaluate several algorithms to perform sound localization in
a commercial entertainment robot. The physical system being investigated is composed of
a manikin head equipped with a two microphones and placed on a manikin body. This type
of systems is commonly used to model sound localization in biological systems and the
algorithms used to analyze the signal are usually inspired from neurology. In the case of an
entertainment robot there is no need to be limited to a neurologically inspired model and
we will use combination of techniques that are commonly used in microphone arrays and
statistical learning. The focus of the work is the task of localizing an unknown stationary
source (compact in location and broad in spectrum). The goal is to find the azimuth angle
of the source relative to the head.

A common paradigm to approximately find the location of a sound source employs a mi-
crophone array and estimates time differences of arrival (TDOA) between microphones
in the array (see for instance [1]). In a dual-microphone array it is usually assumed that
the difference in the two channels is limited to a small time delay (or linear phase in fre-
quency domain) and therefore the cross-correlation is peaked at the the time corresponding
to the delay. Thus, methods that search for extrema in cross-correlation waveforms are
commonly used [2]. The time delay approach is based on the assumption that the sound
waves propagate along a single path from the source to the microphone and that the mi-
crophone response of the two channels for the given source location is approximately the
same. In order for this to hold, the microphones should be identical, co-aligned, and, near
each other relative to the source. In addition there should not be any obstructions between
or near the microphones. The time delay assumption fails in the case of a manikin head: the
microphone are antipodal and in addition the manikin head and body affect the response
in a complex way. In our system the distance to the supporting floor was also significant.
Our approach for overcoming these difficulties is composed of two stages. First, we per-
form signal processing based on the generalized cross correlation transform called Phase



Transform (PHAT) also called Cross Power Spectrum Phase (CPSP). This signal process-
ing removes to a large extent variations due the sound source. Then, rather than proceeding
with peak-finding we employ discriminative learning methods by casting the azimuth es-
timation as a multiclass prediction problem. The results achieved by combining the two
stages gave improved results in our experimental setup.

This paper is organized as follows. In Sec. 2 we describe how the signal received in the
two microphones was processed to generate accurate features. In Sec. 3 we outline the
supervised learning algorithm we used. We then discuss in Sec. 4 approaches to com-
bined predictions from multiple segments. We describe experimental results in Sec. 5 and
conclude with a brief discussion in Sec. 6.

2 Signal Processing

Throughout the paper we denote signals in the time domain by lower case letters and in the
frequency domain by upper case letters. We denote the convolution operator between two
signals by % and the correlation operator by ®. The unknown source signal is denoted by s
and thus its spectrum is S. The source signal passes through different physical setup and is
received at the right and left microphones. We denote the received signals by s’ and s”. We
model the different physical media, the signal passes through, as two linear systems whose
frequency response is denoted by H™ and H!. In addition the signals are contaminated with
noise that may account for non-linear effects such as room reverberations (see for instance
[3] for more detailed noise models). Thus, the received signals can be written in the time
and frequency domain as,
Sl=H!'S+5, s=hxs+¢g 1)
ST=H"S+E, s"=h"xs+e€ . 2
Since the source signal is typically non-stationary we break each training and test sig-
nal into segments and perform the processing described in the sequel based on short-time
Fourier transform. Let N be the number of segments a signal is divided into and L the
number of samples in a single segment. Each is multiplied by a Hanning window and
padded with zeros to smooth the end-of-segment effects and increase the resolution of the
short-time Fourier transform (see for instance [8]). Denote by s!, and s”, the left and right
signal-segments after the above processing. Based on the properties of the Fourier trans-
form, the local cross-correlation between the two signals can be computed efficiently by
the inverse Fourier transform, denoted F—!, of the product of the spectrum of s!, and the
complex conjugate of the spectrum of s,
rn = shos, = F 1 (SLS) . ©)
Had the difference between the two signals been a mere time delay due to the different
location of the microphones, the cross correlation would have obtained its maximal value
at a point which corresponds to the time-lag between the received signals. However, since
the source signal passes through different physical media the short-time cross-correlation
does not necessarily obtain a large value at the time-lag index. It is therefore common (see
for instance [1]) to multiply the spectrum of the cross-correlation by a weighting function
in order to compensate for the differences in the frequency responses obtained at the two
microphones. Denoting the spectral shaping function for the nth segment by ,,, the gen-
eralization cross-correlation from Eq. 3) is, r, = s, ®s%, = F ' (¢, S, Sr). For
“plain” cross-correlation, v,,(5) is equal to 1 at each (discrete) frequency j. In our tests
we found that a globally-equalized cross-correlation gives better results. The transform is
obtained by setting, ¢, (j) = 1/e; where e; is the average over all measurements and both
channels of |S(5)|?. Finally, for PHAT the weight for the spectral point j is,

N 1
) = g -



To further motivate and explain the PHAT weighting scheme, we build on the derivation
in [5] and expand the PHAT assuming that the noise is zero. In PHAT the spectral value at
frequency point j (prior to the inverse Fourier transform) is,

Nl oy aran . S()SH(G)
¢n(J)SL(J)Sﬁ(J) = A
|154,(7)S7,(9)]
Inserting Eq. (1) and Eq. (2) into Eq. (4) without noise we get,
Sty argn — Hn()Sn(G)Hy () Sk () H'HT
Yn(§) SL(G) Sh) = TR e A A AT AT = : ()
|HL(5)Sn(5) Hy(7)Sn() [HY||HT|
Therefore, assuming the noise is zero, PHAT eliminates the
contribution of the unknown source S and the entire wave-
form of PHAT is only a function of the physical setup. If all
other physical parameters are constant, the PHAT waveform
(as well as its peak location) is a function of the azimuth an-
gle 4 of the sound source relative to the manikin head. This , 4\H

(4)

is of course an approximation and the presence of noise and : ]
changes in the environment result in a waveform that devi-
ates from the closed-form given in Eqg. (5). In Fig. 1 we show
the empirical average of the waveform for PHAT and for the
equalized cross-correlation, the vertical bars represent an er-
ror of 1o. In both cases, the location of the maximal corre- ‘ //H/
lation is clearly at 0 as expected. Nonetheless, the high vari- - :
ance, especially in the case of the equalized cross-correlation
imply that classification of individual segments may often be

rather difficult. Figure 1: Average wave-

In practice, we found that it suffices to take only the ener- g(t)ircm ‘]’c‘g:h gstartiardoode\;]i{
getic portion of the generalized cross-correlation waveforms A

L . ter performing PHAT (top)
by considering only time lags of —I through I samples. In and the equalized cross-
what follows we will take this part to be the waveform. For-  correlation (bottom).

mally, the feature vector of the nth segment is defined as,

Xp = (rn(=1),..., (1)) (6)
were [ was set to be bigger than the maximal lag in samples between the two channels,
1 > D/cwhere D is the head diameter and ¢ is speed of sound.

Summarising, the signal processing we perform is based on short time Fourier transform
of the signals received at the two microphones. From the two spectrums we then compute
the generalized cross-correlation using one of the three weighting schemes described above
and taking only 2/ + 1 samples of the resulting waveforms as the feature vectors. We now
move our focus to classification of a single segment.

3 Single Segment Classification

Traditional approaches to sound localization search for the the position of the extreme value
in the generalized cross-correlation waveform that were derived in Sec. 2. While being
intuitive, this approach is prone to noise. Peak location can be considered as a reduction
in dimensionality, from 2] + 1 to 1, of the feature vectors x,,, however we have shown
in Eq. 5 that the entire waveform of PHAT can be used as a feature vector to localise the
source. Indeed, in Sec. 5 we report experimental results which show that peak-finding is
significantly inferior to methods that we now describe, that uses the entire waveform. In all
techniques, peak-location and waveform, we used supervised learning to build a model of
the data using a training set and then used a test set to evaluate the learned model.



In a supervised learning setting, we have access to labelled examples and the goal is to
find a mapping from the instance domain (the peak-location or waveforms in our setting)
to a response variable (the azimuth angle). Since the angle is a continuous variable the
first approach that comes to mind is using a linear or non-linear regressors. However,
we found that regression algorithms such as Widrow-Hoff [10] yielded inferior results.
Instead of treating the learning problem as a regression problem, we quantized the angle and
converted the sound localization problem into a multiclass decision problem. Formally, we

bisected the interval [-90°, +90°] into K non-overlapping intervals (1, ... §(K) where
60 = [9° — AG/2,6" + AG/2) and A§ = 180°/(K — 1). We now can transform the
real-valued angle of the nth segment, 6,,, into a discrete variable y, € {1,..., K} where

yn = kiff 8, € 6(%). After this quantization, the training set is composed of instance-label
pairs {zn, yn }X_; and the first task is to find a classification rule from the peak-location or
waveforms space into {1, ..., K'}. We will first describe the method used for peak-location
and then we will describe two discriminative methods to classify the waveform. The first
is based on a multiclass version of the Fisher linear discriminant [7] and is very simple to
implement. The second employs recent advances in statistical learning and can be used in
an online fashion. It thus can cope, to some extent with changes, in the environment such
as moving elements that change the reverberation properties of the physical media.

Peak location classification: Due to the relative low sampling frequency (F; = 16kH z)
spline interpolation was used to improve the peak location. In microphone arrays it is com-
mon to translate the peak-location to an estimate of the source azimuth using a geometric
formula. However, this was found to be inappropriate due to the internal reverberations
generated by the manikin head. We thus used the classification method describe in [4].

The peak location data was modelled using a separate histogram for each direction k. For
a given direction (%) all the training measurements x,, for which 8,, = () are used to
build a single histogram: H (r|k) = 3=, _; [xn € [rA, (r +1)A)] where [7] is 1 if
w is true and O otherwise, A is the size of the bin in the histogram, A = % and |H|
is the number of bins. An estimate of the probability density function was taken to be
the normalized histogram step function: P (x|k) = H (r: x € [rA, (r + 1)A) |k) /Ny
where Ny, is the number of training measurements for which y,, = k

In order to classify new test data we simply compute the likelihood of the observed mea-
surement under each distribution and choose the class attaining the maximal likelihood
(ML) score with respect to the distribution defined by the histogram,

g= argm,?x]5 (x|k) . @)

Multiclass Fisher discriminant:  Generalising the Fisher discriminant for binary classi-
fication problems to multiclass settings, each class is modelled as a multivariate normal
distribution. To do so we divide the training set into subsets where the kth subset corre-
sponds to measurements from azimuth in 8(*), The density function of the kth class is

P (xk) = L= )T C (x = uk)) ,

1
v (2m)"|Cy| ( 2
where x7 is the transpose of x, n = 21 + 1 is its dimensionality, .;, denotes the mean of
the normal distribution, and C;, the covariance matrix. Each mean and covariance matrix
are set to be the maximum likelihood estimates,

R 4 1 or )
by = N, Z Xp 3 Cp = Ne—1 Z (Xn — fir)” (Xn — fix) -

n:Yn= n:yn=~k

New test waveforms were then classified using the ML formula, Eq. 7.



The advantage of Fisher linear discriminant is that it is simple and easy to implement.
However, it degenerates if the training data is non-stationary, as often is the case in sound
localization problems due to effects such as moving objects. We therefore also designed,
implemented and tested a second discriminative methods based on the Perceptron.

Online Learning using Multiclass Perceptron with Kernels: Despite, or because of,
its age the Perceptron algorithm [9] is a simple and effective algorithm for classification.
We chose the Perceptron algorithm for its simplicity, adaptability, and ease in incorporating
Mercer kernels described below. The Perceptron algorithm is a conservative online algo-
rithm: it receives an instance, outputs a prediction for the instance, and only in case it made
a prediction mistake the Perceptron update its classification rule which is a hyperplane.
Since our setting requires building a multiclass rule, we use the version described in [6]
which generalises the Perceptron to multiclass settings. We first describe the general form
of the algorithm and then discuss the modifications we performed in order to adapt it to the
sound localization problem.

To extend the Perceptron algorithm to multiclass problem we maintain K hyperplanes (one
per class) denoted w1, ..., wg. The algorithm works in an online fashion working on one
example at a time. On the nth round, the algorithm gets a new instance x,, and set the
predicted class to be the index of the hyperplane attaining the largest inner-product with
the input instance, ¢, = argmaxy Wwy - X, . If the algorithm made a prediction error,
that is g, # wyn, it updates the set of hyperplanes. In [6] a family of possible update
schemes was given. In this work we have used the so called uniform update which is
very simple to implement and also attained very good results. The uniform update moves
the hyperplane corresponding to the correct label w,, in the direction of x,, and all the
hyperplanes whose inner-products were larger than w,,, - x,, away from x,,. Formally, let
Ap=A{k|k#yn; Wi X, > Wy, -X,} . We update the hyperplanes as follows,

X, k=yn,
WkZWk+{_ﬁxn kegn ; ®)

and if £ ¢ A, U{y,} then we keep wy, intact. This update of the hyperplanes is performed
only on rounds on which there was a prediction error. Furthermore, on such rounds only
a subset of the vectors is updated and thus the algorithm is called ultraconservative. The
multiclass Perceptron algorithm is guaranteed to converge to a perfect classification rule
if the data can be classified perfectly by an unknown set of hyperplanes. When the data
cannot be classified perfectly then an alternative competitive analysis can be applied.

The problem with above algorithm is that it allows only linear classification rules. How-
ever, linear classifiers may not suffice to obtain in many applications, including the sound
localization application. We therefore incorporate kernels into the multiclass Perceptron.
A kernel is an inner-product operator K : X x X — R where X is the instance space (for
instance, PHAT waveforms). An explicit way to describe K is via a mapping ¢ : X — X

from X to an inner-products space X such that K (z,z') = ¢(z) - ¢('). Common kernels

are RBF kernels and polynomial kernels which take the form K (x,x') = (a +x - x')%

Any learning algorithm that is based on inner-products with a weighted sum of vectors can
be converted to a kernel-based version by explicitly keeping the weighted combination of
vectors. In the case of the multiclass Perceptron we replace the update from Eqg. 8 with a
“kernelized” version,

_ d’(xn) k=yn
Wk—Wk-}-{ _|A1—n\¢(xn) keA, - 9)

Since we cannot compute ¢(x,, ) explicitly we instead perform bookkeeping of the weights
associated with each ¢(x,,) and compute a inner-products using the kernel functions. For
instance, the inner-product of a vector w = 3. a;¢p(x;) with a new instance x’ isw - x' =

2 p(xi) - p(x') = 32 i K (x4, %),



Algorithm Err 2

PHAT + Poly Kernels, D=5 37.6% +0.2% | 20° £0.2°
PHAT + Fisher 37.8% +0.2% | 20.2° £0.2°
PHAT + Peak-finding 44.8% +0.2% | 25.8 £0.2°

Equalized CrossCor + Peak-finding | 59.1% +0.1% | 35.7 £0.2°
Table 1: Summary of results of sound localization methods for a single segment.

In our experiments we found that polynomial kernel of degree 5 yielded the best results.
The results are summarised in Table 1. We defer the discussion of the results to Sec. 5.

4 Multi-segment Classification

The accuracy of a single segment classifier is too low to make our approach practical. How-
ever, if the source of sound does not move for a period of time, we can accumulate evidence
from multiple segments in order to increase the accuracy. Due to the lack of space we only
outline the multi-segment classification procedure for the Fisher discriminant and compare
it to smoothing and averaging techniques used in the signal processing community.

In multi-segment classification we are given f waveforms for which we assume that
the source angle did not change in this period, i.e., 83, = 6,, Vj = 1,...,f. Each
small window was processed independently to give a feature vector x7. We then con-
verted the waveform feature vector into a probability estimate for each discrete angle
direction, P(x7%|0()) using the Fisher discriminant. We next assumed that the proba-
bility estimates for consecutive windows are independent. This is of course a false as-
sumption. However, we found that methods which compensate for the dependencies did
not yield substantial improvements. The probability density function of the entire win-

dow is therefore P(xL-/|6*)) = []/_, P(xZ[¢®) , and the ML estimation for 6, is
6, = argmaxyw P(xL-/16(%)) . We compared the Maximum Likelihood decision un-
der the independence assumption with the following commonly used signal processing
technique. We averaged the power spectrum and cross power spectrum of the different

windows and only then we proceeded to compute the generalized cross correlation wave-
form,r, = F~! (¢, E{S,Sr}) ,where E{-} is the average over the measurements

in the same window, E{Z,,} = %2521 ZJ . The averaged weight function for the

PHAT waveform is now ¢, (j) = 1/|E{S%(5)Sn(j)}| . When using averaged power
spectrum it is also possible to define a smoothed coherent transform (SCOT) [1]. The
weight vector in this case is identical to the PHAT weight in the single segment case,

Pu(j) = 1/\/E {SL()SL() } E{S5(j)Sn(4)}. Finally, we applied the classification
techniques for the single segments on the resulting (smoothed or averaged) waveform.

5 Experimental Results

In this section we report and discuss results of experiments that we performed with the
various learning algorithms for single-segments and multiple segments. Measurements
where made using the Sony ERS-210 AIBO robot. The sampling frequency was fixed to
F, = 16kH z and the robot’s uni-directional microphone without automatic level control
was used. The robot was laid on a concrete floor in a regular office room, the room rever-
berations was Tgg =~ 0.6sec. A loudspeaker, playing speech data from multiple speakers,
was placed 190em in front of the robot and 90c¢m above its plane, the background noise
was SNR = 40db. A PC connected through a wireless link to the robot directed its head
relative to the speaker. The location of the sound source was limited to be in front of the
head (8 = —90°... 4+ 90°) at a fixed constant elevation and in jumps of +10°. Therefore,
the number of classes, K, for training is 19. An illustration of the system is given in Fig. 2.



Algorithm Err I

Max. Likl. PHAT + Fisher 3.7% +0.4% | 0.4° £0.1°
SCOT + Fisher 4.8% +0.4% | 0.8° +0.2°
Smoothed PHAT + Fisher 6.4% +0.7% | 1.3° £0.2°
Smoothed PHAT + Peak-finding | 7.6% +0.7% | 1.3 £0.3°
SCOT + Peak-finding 78% +0.7% | 1.£ +0.3°

Table 2; Summary of results of sound localization methods for multiple segments.

Further technical details can be obtained from http://udi.benreuven.com. (MATLAB is a
trademark of Mathworks, Inc. and AIBO is a trademark of Sony and its affiliates.) For each
head direction 4000 segments of data were collected. Each segment is 16msec long. The
segments were collected with a partial overlap of 10msec. For each direction, the measure-
ments were divided into equal amounts of train and test measurements. The total number of
segments per class, Ny, is 2000. Therefore, altogether there were N = Nj, x K = 38,000
segments for training and the same amount for evaluation. An FFT of size 512 was used to
generate un-normalized cross-correlations, equalized cross-correlations, and PHAT wave-
forms. From the transformed waveforms 11 samples where taken (I = 5 in Eq. 6). Extrema
locations in histograms were found using |H| = 41 bins.

We used two evaluation measures for comparing the different algorithms. The first, denoted
Err, is the empirical classification error that counts the number of times the predicted
(discretized) angle was different than the true angle, that is, Err = % Eﬁzl [0 # én]].
The second evaluation measure, denoted /4, is the average absolute difference between
the predicted angle and the true angle, ¢; = 25:1 |§n —6,|. It should be kept
in mind that the test data was obtained from the same direction set as the training
data. Therefore, ¢; is an appropriate evaluation measure of the errors in our experi-
mental setting. However, alternative evaluation methods should be devised for general
recordings when the test signal is not confined to a finite set of possible directions.
The accuracy results with respect to both mea-

sures on the test data for the various representa- " O
tions and algorithms are summarized in Table 1. .

It is clear from the results that traditional meth-

H

ods which search for extrema in the waveforms

are inferior to the discriminative methods. As a ﬁ])) v

by-product we confirmed that equalized cross-

correlations is inferior to PHAT modelling for R

high SNR with strong reverberations, similar re- Jaabs

sults were reported in [11]. The two discrimi-

native methods achieve about the same results. Figure 2: Acquisition system overview.

Using the Perceptron algorithm with degree 5

achieves the best results but the difference between the Perceptron and the multiclass Fisher
discriminant is not statistically significant. It is worth noting again that we also tested lin-
ear regression algorithms. Their performance turns to be inferior to the discriminative
multiclass approaches. A possible explanation is that the multiclass methods employ mul-
tiple hyperplanes and project each class onto a different hyperplane while linear regression
methods seek a single hyperplane onto which example are projected.

Although Fisher’s discriminant and the Perceptron algorithm exhibit practically the same
performance, they have different merits. While Fisher’s discriminant is very simple
to implement and is space efficient the Perceptron is capable to adapt quickly and
achieves high accuracy even with small amounts of training data. In Fig 3 we com-
pare the error rates of Fisher’s discriminant and the Perceptron on subsets of the train-
ing data. The Perceptron clearly outperforms Fisher’s discriminant when the num-
ber of training examples is less than 3000 but once about 5000 examples are pro-



vided the two algorithms are indistinguishable. This suggests that online algorithms
may be more suitable when the sound source is stationary only for short periods.
Last we compared multi-segment results. Multi-
segment classification was performed by taking
f = 41 consecutive measurements over a win- .4,
dow of 256msec during which the source loca- .| ™
tion remained fix. In Table 2 we report clas-
sification results for the various multi-segment
techniques. (Since the Perceptron algorithm
used a very large number of kernels we did not
implement a multi-segment classification using
the Perceptron. We are currently conducting re-
search on space-efficient kernel-based methods -
for multi-segment classification.) Here again, =
the best performing method is Fisher’s discrim- Figure 3: Error rates of Fisher’s dis-
inant that combines the scores directly without & i 4 o0 e Perceptron for vari-
averaging and smoothing leads the pack. The re- a

- " LR Y ous training sizes.
sulting prediction accuracy of Fisher’s discrimi-
nant is good enough to make the solution prac-
tical so long as the sound source is fixed and the recording conditions do not change.

Error Rate

6 Discussion

We have demonstrated that by using discriminative methods highly accurate sound local-
ization is achievable on a small commercial robot equipped with a binaural hearing that
are placed inside a manikin head. We have confirmed that PHAT is superior to plain cross-
correlation. For classification using multiple segments classifying the entire PHAT wave-
form gave better results than various techniques that smooth the power spectrum over the
segments. Our current research is focused on efficient discriminative methods for sound
localization in changing environments.
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