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Abstract 

We propose analysis of information in speech using three sources 
- language (phone), speaker and channeL Information in speech is 
measured as mutual information between the source and the set of 
features extracted from speech signaL We assume that distribu­
tion of features can be modeled using Gaussian distribution. The 
mutual information is computed using the results of analysis of 
variability in speech. We observe similarity in the results of phone 
variability and phone information, and show that the results of the 
proposed analysis have more meaningful interpretations than the 
analysis of variability. 

1 Introduction 

Speech signal carries information about the linguistic message, the speaker, the 
communication channeL In the previous work [1, 2], we proposed analysis of in­
formation in speech as analysis of variability in a set of features extracted from 
the speech signal. The variability was measured as covariance of the features , and 
analysis was performed using using multivariate analysis of variance (MANOVA). 
Total variability was divided into three types of variabilities, namely, intra-phone 
(or phone) variability, speaker variability, and channel variability. Effect of each 
type was measured as its contribution to the total variability. 

In this paper, we extend our previous work by proposing an information-theoretic 
analysis of information in speech. Similar to MANOVA, we assume that speech 
carries information from three main sources- language, speaker, and channeL We 
measure information from a source as mutual information (MI) [3] between the 
corresponding class labels and features. For example, linguistic information is mea­
sured as MI between phone labels and features. The effect of sources is measured 
in nats (or bits). In this work, we show it is easier to interpret the results of this 
analysis than the analysis of variability. 

In general, MI between two random variables X and Y can be measured using 
three different methods [4]. First, assuming that X and Y have a joint Gaussian 



distribution. However, we cannot use this method because one of the variables - a set 
of class labels - is discrete. Second, modeling distribution of X or Y using parametric 
form , for example, mixture of Gaussians [4]. Third, using non-parametric techniques 
to estimate distributions of X and Y [5]. The proposed analysis is based on the 
second method, where distribution of features is modeled as a Gaussian distribution. 
Although it is a strong assumption, we show that results of this analysis are similar 
to the results obtained using the third method [5]. 

The paper is organized as follows. Section 2 describes the experimental setup. 
Section 3 describes MAN OVA and presents results of MAN OVA. Section 4 proposes 
information theoretic approach for analysis of information in speech and presents 
the results. Section 5 compares these results with results from the previous study. 
Section 6 describes the summary and conclusions from this work. 

2 Experimental Setup 

In the previous work [1 , 2], we have analyzed variability in the features using three 
databases - HTIMIT, OGI Stories and TIMIT. In this work, we present results 
of MAN OVA using OGI Stories database; mainly for the comparison with Yang's 
results [5 , 6]. English part of OGI Stories database consists of 207 speakers, speaking 
for approximately 1 minute each. Each utterance is transcribed at phone level. 
Therefore, phone is considered as a source of variability or source of information. 
The utterances are not labeled separately by speakers and channels, so we cannot 
measure speaker and channel as separate sources. Instead, we assume that different 
speakers have used different channels and consider speaker+channel as a single 
source of variability or a single source of information. 

Figure 1 shows a commonly used time-frequency representation of energy in speech 
signal. The y-axis represents frequency, x-axis represents time, and the darkness of 
each element shows the energy at a given frequency and time. A spectral vector is 
defined by the number of points on the y-axis, S(w, tm ). In this work, this vector 
contains 15 points on Bark spectrum. The vector is estimated at every 10 ms using a 
25 ms speech segment. It is labeled by the phone and the speaker and channel label 
of the corresponding speech segment. A temporal vector is defined by a sequence 
of points along time at a given frequency, S(wn, t). In this work, it consists of 
50 points each in the past and the future with respect to the current observation 
and the observation itself. As the spectral vectors are computed every 10 ms, the 
temporal vector represents 1 sec of temporal information. The temporal vectors 
are labeled by the phone and the speaker and channel label of the current speech 
segment. In this work, the analysis is performed independently using spectral and 
temporal vectors. 

3 MANOVA 

Multivariate analysis of variance (MANOVA) [7] is used to measure the variation 
in the data, {X E Rn }, with respect to two or more factors. In this work, we use 
two factors - phone and speaker+channel. The underline model of MAN OVA is 

(1) 

where, i = 1"" ,p, represents phones, j = 1"" Be, represents speakers and chan­
nels. This equation shows that any feature vector, X ijk , can be approximated using 
a sum of X.. , the mean of the data; Xi ., mean of the phone i; Xij., mean of the 
speaker and channel j, and phone i; and Eij k, an error in this approximation. Using 
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Figure 1: Time-frequency representation of logarithmic energies from speech signal 

this model, the total covariance can be decomposed as follows 

~total = ~p + ~sc + ~residual (2) 

where 

"""' N i (X. _ X )t (X. - X ) 
~ N .. .. .. .. 

~sc LL Nij - - t - -- (X, - X ) (X, - X ) N ZJ .. ZJ z. 

i j 

~residual 
1""",,,"",,,"", - t -

N ~ ~ ~(Xijk - Xij) (Xijk - Xij) 
i j k 

and, N is the data size and Nijk refers to the number of samples associated with 
the particular combination of factors (indicated by the subscript). 

The covariance terms are computed as follows. First, all the feature vectors (X) 
belonging to each phone i are collected and their mean (Xi) is computed. The 
covariance of these phone means, ~p, is the estimate of phone variability. Next, the 
data for each speaker and channel j within each phone i is collected and the mean 
of the data (Xij ) is computed. The covariance of the means of different speakers 
averaged over all phones, ~sc, is the estimate of speaker variability. All the vari­
ability in the data is not explained using these sources. The unaccounted sources, 
such as context and coarticulation, cause variability in the data collected from 
one speaker speaking one phone through one channel. The covariance within each 
phone, speaker, and channel is averaged over all phones, speakers, and channels, 
and the resulting covariance, ~residual, is the estimate of residual variability. 

3.1 Results 

Results of MAN OVA are interpreted at two levels - feature element and feature 
vector. Results for each feature element are shown in Figure 2. Table 1 shows the 
results using the complete feature vector. The contribution of different sources is 
calculated as trace(~source )ltrace(~total). Note that this measure cannot be used 
to compare variabilities across feature-sets with different number of features. There­
fore, we cannot directly compare contribution of variabilities in time and frequency 
domains. For comparison, contribution of sources in temporal domain is calculated 



Table 1: Contribution of sources in spectral and temporal domains 
o contribution 

source pectral Domain Temporal Domain 

phone 35.3 4.0 
speaker+channel 41.1 30.3 

as trace(EtI',source E) /trace(EtI',totaIE) , where ElOl x 15 is a matrix of 15 leading 
eigenvectors of I',total. 

In spectral domain, the highest phone variability is between 4-6 Barks. The highest 
speaker and channel variability is between 1-2 Barks where phone variability is 
the lowest. In temporal domain, phone variability spreads for approximately 250 
ms around the current phone. Speaker and channel variability is almost constant 
except around the current frame. This deviation is explained by the difference in 
t he phonetic context among the phone instances across different speakers. Thus, 
features for speakers within a phone differ not only because of different speaker 
characteristics but also different phonetic contexts. This deviation is also seen in 
the speaker and channel information in the proposed analysis. In the overall results 
for each domain, spectral domain has higher variability due to different phones than 
temporal domain. It also has higher speaker and channel variability than temporal 
domain. 

The disadvantage of this analysis is that it is difficult to interpret the results. For 
example, how much phone variability is needed for perfect phone recognition? and 
is 4% of phone variability in temporal domain significant? In order to answer these 
questions, we propose an information theoretic analysis. 
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Figure 2: Results of analysis of variability 



4 Information-theoretic Analysis 

Results of MAN OVA can not be directly converted to MI because the determinant 
of source and residual covariances do not add to the determinant of total covariance. 
Therefore, we propose a different formulation for the information theoretic analysis 
as follows. Let {X E Rn} be a set of feature vectors, with probability distribution 
p(X). Let h(X) be the entropy of X. Let Y = {Y1 , ... , Ym} be a set of different 
factors and each Yi be a set of classes within each factor. For example, we can 
assume that Y1 = {yf} represents phone factor and each yf represent a phone class. 
Lets assume that X has two parts; one completely characterized by Y and another 
part, Z , characterized by N(X) ""' N(O, Jn xn ), where J is the identity matrix. Let 
J (X; Y) be the MI between X and Y. Assuming that we consider all the possible 
factors for our analysis, 

J(X;Y) = J(X;Y1, ... ,Ym) = h(X)-h(X/Yl , ... ,Ym) = h(X)-h(Z) = D(PIIN) , 

where D() is the kullback-liebler distance [3] between distributions P and N. Using 
the chain-rule, the left hand side can be expanded as follows , 

m 

J(X; Y1,·.·, Yn ) = J(X; Yd + J(X; Y2 /Yd + l: J(X; Yi/Yi - l"'" Y2 , Yd· (3) 
i=3 

If we assume that there are only two factors Y1 and Y2 used for the analysis, then 
this equation is similar to the decomposition performed using MAN OVA (Equation 
2). The term on the left hand side is entropy of X which is the total information 
in X that can be explained using Y. This is similar to the left-hand side term in 
MANOVA that describes the total variability. On the right hand side, first term 
is similar to the phone variability, second term is similar to the speaker variability, 
and the last term which calculates the effect of unaccounted factors (Y3 , ... , Ym ) is 
similar to the residual variability. 

First and second terms on the right hand side of Equation 3 are computed as follows. 

J(X; Yd = h(X) - h(X/Yd (4) 

J(X; Y2 /Yd = h(X/Yd - h(X/Y1, Y2 ). (5) 
h () terms are estimated using parametric approximation to the total and condi­
tional distribution It is assumed that the total distribution of features is a Gaussian 
distribution with covariance ~. Therefore, h (X) = ~ log (2net I~I. Similarly, we 
assume that the distribution of features of different phones (i) is a Gaussian distri­
bution with covariances ~i' Therefore, 

h(X/Y1) = ~ l: p (y~)Iog (2net I~il (6) 
yiCYi 

Finally, we assume that the distribution of features of different phones spoken by 
different speakers is also a Gaussian distribution with covariances ~ij. Therefore, 

h(X/Y1,Y2 ) = ~ l: p(yLYOlog(2netl~ijl (7) 
y;CY1,y~CY2 

Substituting equations 6 and 7 in equations 4 and 5, we get 

J(X ' Y;)=~lo I~I . 
, 1 2 g IT. 1~ ' IP(Yil Yi CY; , 

(8) 

1 IT· I~'IP(Y;) 
J(X;Y2 /Yd = -log YicY;' . j 

2 IT i j I ~i IP(Yi 'Y2) 
Yl CY1 'Y2 CY2 

(9) 
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Figure 3: Results of information-theoretic analysis 

Table 2: Mutual information between features and phone and speaker and channel 
labels in spectral and temporal domains 

source 
phone 

speaker+ channel 

4 .1 Results 

Figure 3 shows the results of information-theoretic analysis in spectral and tempo­
ral domain. These results are computed independently for each feature element. 
In spectral domain, phone information is highest between 3-6 Barks. Speaker and 
channel information is lowest in that range and highest between 1-2 Barks. Since 
OGI Stories database was collected over different telephones, speaker+ channel in­
formation below 2 Barks ( :=::: 200 Hz ) is due to different telephone channels. In 
temporal domain, the highest phone information is at the center (0 ms). It spreads 
for approximately 200 ms around the center. Speaker and channel information is 
almost constant across t ime except near the center. 

Note that the nature of speaker and channel variability also deviates from the con­
stant around the current frame. But, at the current frame, phone variability is 
higher than speaker and channel variability. The results of analysis of informa­
t ion show that, at the current frame, phone information is lower than speaker and 
channel information. This difference is explained by comparing our MI results with 
results from Yang et. al. [6] in the next section. 

Table 2 shows the results for the complete feature vector. Note that there are some 
practical issues in computing determinants in Equation 4 and 5. They are related 
to data insufficiency, specifically, in temporal domain where the feature vector is 
101 points and there are approximately 60 vectors per speaker per phone. We ob-



serve that without proper conditioning of covariances, the analysis overestimates 
MI (l(X ; Yl , Y2 ) > H(Yl , Y2 )). This is addressed using the condition number to 
limit the number of eigenvalues used in the calculation of determinants. Our hy­
pothesis is that in presence of insufficient data, only few leading eigen vectors are 
properly estimated. We have use condition number of 1000 to estimate determinant 
of ~ and ~i, and condition number of 100 to estimate the determinant of ~ij. The 
results show that phone information in spectral domain is 1.6 nats. Speaker and 
channel information is 0.5 nats. In temporal domain, phone information is about 
1.2 nats. Speaker and channel information is 5.9 nats. Comparison of results from 
spectral and temporal domains shows that spectral domain has higher phone infor­
mation than temporal domain. Temporal domain has higher speaker and channel 
information than spectral domain. 

Using these results, we can answer the questions raised in Section 3. First question 
was how much phone variability is needed for perfect phone recognition? The an­
swer to the question is H(Yd, because the maximum value of leX; Yd is H(Yd· 
We compute H(Yl ) using phone priors. For this database, we get H(Yl ) = 3.42 
nats, that means we need 3.42 nats of information for perfect phone recognition. 
Question about significance of phone information in temporal domain is addressed 
by comparing it with information-less MI level. The information-less MI is com­
puted as MI between the current phone label and features at 500 ms in the past 
or in the future . From our results, we get information-less MI equal to 0.0013 nats 
considering feature at 500 ms in the past , and 0.0010 nats considering features at 
500 ms in the future l . The phone information in temporal domain is 1.2 bits that 
is greater than both the levels. Therefore it is significant. 

5 Results in Perspective 

In the proposed analysis, we estimated MI assuming Gaussian distribution for the 
features. This assumption is validated by comparing our results with the results 
from a study by Yang, et. al.,[6], where MI was computed without assuming any 
parametric model for the distribution of features. Note that only entropies can 
be directly compared for difference in the estimation technique [3]. However, MI 
using Gaussian assumption can be equal to, less or more than the actual MI. In 
the comparison of our results with Yang's results , we consider only the nature of 
information observed in both studies. The difference in actual MI levels across the 
two studies is related to the difference in the estimation techniques. 

In spectral domain, Yang's study showed higher phone information between 3-8 
Barks. The highest phone information was observed at 4 Barks. Higher speaker 
and channel information was observed around 1-2 Barks. In temporal domain, their 
study showed that phone information spreads for approximately 200 ms around the 
current time frame. Comparison of results from this analysis and our analysis shows 
that nature of phone information is similar in both studies. Nature of speaker and 
channel information in spectral domain is also similar. We could not compare the 
speaker and channel information in temporal domain because Yang's study did not 
present these results. 

In Section 4.1, we observed difference in the nature of speaker and channel vari­
ability, and speaker and channel information at Ii =5 Barks. Comparing MI levels 
from our study to those from Yang's study, we observe that Yang's results show that 
speaker and channel information at 5 Barks is less that the corresponding phone 
information. This is consistent with results of analysis of variability, but not with 

lInformation-less MI calculated using Yang et. al. is 0.019 bits 



the proposed analysis of information. As mentioned before, this difference is due 
to difference in the density estimation techniques used for computing MI. In the 
future work, we plan to model the densities using more sophisticated techniques, 
and improve the estimation of speaker and channel information. 

6 Conclusions 

We proposed analysis of information in speech using three sources of information 
- language (phone), speaker and channel. Information in speech was measured as 
MI between the class labels and the set of features extracted from speech signal. 
For example, linguistic information was measured using phone labels and the fea­
tures. We modeled distribution of features using Gaussian distribution. Thus we 
related the analysis to previous proposed analysis of variability in speech. We ob­
served similar results for phone variability and phone information. The speaker 
and channel variability and speaker and channel information around the current 
frame was different. This was shown to be related to the over-estimation of speaker 
and channel information using unimodal Gaussian model. Note that the analysis of 
information was proposed because its results have more meaningful interpretations 
than results of analysis of variability. For addressing the over-estimation, we plan 
to use more complex models ,such as mixture of Gaussians, for computing MI in 
the future work. 
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