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Abstract

In this work, we study an information filtering model where the relevance
labels associated to a sequence of feature vectors are realizations of an
unknown probabilistic linear function. Building on the analysis of a re-
stricted version of our model, we derive a general filtering rule based on
the margin of a ridge regression estimator. While our rule may observe
the label of a vector only by classfying the vector as relevant, experiments
on a real-world document filtering problem show that the performance
of our rule is close to that of the on-line classifier which is allowed to
observe all labels. These empirical results are complemented by a theo-
retical analysis where we consider a randomized variant of our rule and
prove that its expected number of mistakes is never much larger than that
of the optimal filtering rule which knows the hidden linear model.

1 Introduction

Systems able to filter out unwanted pieces of information are of crucial importance for
several applications. Consider a stream of discrete data that are individually labelled as
“relevant” or “nonrelevant” according to some fixed relevance criterion; for instance, news
about a certain topic, emails that are not spam, or fraud cases from logged data of user
behavior. In all of these cases, a filter can be used to drop uninteresting parts of the stream,
forwarding to the user only those data which are likely to fulfil the relevance criterion.
From this point of view, the filter may be viewed as a simple on-line binary classifier.
However, unlike standard on-line pattern classification tasks, where the classifier observes
the correct label after each prediction, here the relevance of a data element is known only if
the filter decides to forward that data element to the user. This learning protocol with par-
tial feedback is known as adaptive filtering in the Information Retrieval community (see,
e.g., [14]). We formalize the filtering problem as follows. Each element of an arbitrary
data sequence is characterized by a feature vector ������� and an associated relevance
label � (say, �
	��
� for relevant and �
	���� for nonrelevant). At each time ��	�������������� ,
the filtering system observes the � -th feature vector ��� and must decide whether or not to
forward it. If the data is forwarded, then its relevance label ��� is revealed to the system,
�
The research was supported by the European Commission under the KerMIT Project No. IST-

2001-25431.



which may use this information to adapt the filtering criterion. If the data is not forwarded,
its relevance label remains hidden. We call � � the � -th instance of the data sequence and
the pair � � ��� � ��� the � -th example. For simplicity, we assume � ����� 	 � for all ��� � . There
are two kinds of errors the filtering system can make in judging the relevance of a feature
vector � � . We say that an example � � � � � � � is a false positive if � � 	���� and � � is classified
as relevant by the system; similarly, we say that � � � � � � � is a false negative if � � 	��
� and
� � is classified as nonrelevant by the system. Although false negatives remain unknown,
the filtering system is scored according to the overall number of wrong relevance judge-
ments it makes. That is, both false positives and false negatives are counted as mistakes.
In this paper, we study the filtering problem under the assumption that relevance judge-
ments are generated using an unknown probabilistic linear function. We design filtering
rules that maintain a linear hypothesis and use the margin information to decide whether
to forward the next instance. Our performance measure is the regret; i.e., the number of
wrong judgements made by a filtering rule over and above those made by the rule knowing
the probabilistic function used to generate judgements. We show finite-time (nonasymp-
totical) bounds on the regret that hold for arbitrary sequences of instances. The only other
results of this kind we are aware of are those proven in [9] for the apple tasting model.
Since in the apple tasting model relevance judgements are chosen adversarially rather than
probabilistically, we cannot compare their bounds with ours. We report some preliminary
experimental results which might suggest the superiority of our methods as opposed to the
general transformations developed within the apple tasting framework. As a matter of fact,
these general transformations do not take margin information into account.

In Section 2, we introduce our probabilistic relevance model and make some preliminary
observations. In Section 3, we consider a restricted version of the model within which
we prove a regret bound for a simple filtering rule called SIMPLE-FIL. In Section 4, we
generalize this filtering rule and show its good performance on the Reuters Corpus Volume
1. The algorithm employed, which we call RIDGE-FIL, is a linear least squares algorithm
inspired by [2]. In that section we also prove, within the unrestricted probabilistic model,
a regret bound for the randomized variant P-RIDGE-FIL of the general filtering rule. Both
RIDGE-FIL and its randomized variant can be run with kernels [13] and adapted to the case
when the unknown linear function drifts with time.

2 Learning model, notational conventions and preliminaries

The relevance of � � is given by a � ��� ���	� -valued random variable 
 � (where 
 � 	 �
means “relevant”) such that there exists a fixed and unknown vector � � ��� , ���
� 	 � ,
for which ��� 
 ��� 	���� � � for all � 	 � ����������� ��� . Hence � � is relevant with probability
� ����� � � � ��� � ��� � ����� . The random variables 
�� ������� ��
�� are assumed to be indepen-
dent, whereas we do not make any assumption on the way the sequence ��� ���! ������� ���!� is
generated. In this model, we want to perform almost as well as the algorithm that knows
� and forwards � � if and only if � � � �"�#� . We consider linear-threshold filtering al-
gorithms that predict the value of 
 � through SGN $&% �� � � �(' �*) , where % � � � � is a
dynamically updated weight vector which might be intended as the current approximation
to � , and ' � is a suitable time-changing “confidence” threshold. For any fixed sequence
��� ���! ������� ���!��� � � of instances, we use + � to denote the margin � � � � and ,+ � to
denote the margin % �� � � . We define the expected regret of the linear-threshold filtering al-
gorithm at time � as -.�&
 � � ,+ � �/' � ��01�2���3-.�4
 � + � 01�5� . We observe that in the conditional
-76 -probability space where ,+ � �8' � is given we have
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where we use ��� � to denote the Bernoulli random variable which is 1 if and only if predi-
cate � is true. Integrating over all possible values of ,+ � �8' � we obtain

-.�&
 � � ,+ � �(' � ��01�5� �(-��4
 � + � 01�5� 	 D + � D�-.��� ,+ � �8' � ��+ ��= �5� (1)

= D + � D�-.�BD ,+ � �8' � �A+ � D@� D + � D �
= �� ������� � � ,+ � �(' � � + � �  � � (2)

where the last inequality is Markov’s. These (in)equalities will be used in Sections 3 and 4.2
for the analysis of SIMPLE-FIL and P-RIDGE-FIL algorithms.

3 A simplified model

We start by analyzing a restricted model where each data element has the same unknown
probability 	 of being relevant and we want to perform almost as well as the filtering rule
that consistently does the optimal action (i.e., always forwards if 	:� � � � and never for-
wards otherwise). The analysis of this model is used in Section 4 to guide the design of
good filtering rules for the unrestricted model.

Let 
 	�	 � � � � and let ,
 � � 	 ,	 � � � � � � be the sample average of 
 , where � � is
the number of forwarded data elements in the first � time steps and ,	 � � is the fraction of
true positives among the �
� elements that have been forwarded. Obviously, the optimal
rule forwards if and only if 
 ��� . Consider instead the empirical rule that forwards if
and only if , 
 � ��
�� � � . This rule makes a mistake only when 
!,
 � ��
�� = � . To make

the probability of this event go to zero with � , it suffices that -��BD ,
 � � ��
CD = D 
CD ��� �
as ����� , which can only happen if � � increases quickly enough with � . Hence, data
should be forwarded (irrespective to the sign of the estimate , 
 � � ) also when the confidence
level for , 
 � � gets too small with respect to � . A problem in this argument is that large
deviation bounds require � � 	��
� � ��
  � for making -.��D , 
 � � ��
CD�� D 
CD � small. But in
our case 
  is unknown. To fix this, we use the condition � � 	��
� � � ,
  � � � . This looks

dangerous, as we use the empirical value of , 
 � � to control the large deviations of , 
 � �
itself; however, we will show that this approach indeed works. An algorithm, which we
call SIMPLE-FIL, implementing the above line of reasoning takes the form of the following
simple rule: forward if and only if , 
 � ��
�� � ' � � � , where '�� 	 ��� ���� "! �����#� �%$ � . The
expected regret at time � of SIMPLE-FIL is defined as the probability that SIMPLE-FIL makes
a mistake at time � minus the probability that the optimal filtering rule makes a mistake,
that is -��4
 � � , 
 � ��
�� � ' � �
0 �2��� -.�&
 � 
 0 �5� . The next result shows a logarithmic bound
on this regret.

Theorem 1 The expected cumulative regret of SIMPLE-FIL after any number �(� � of time
steps is at most ��&��2�CD 
CD � �	�' (!�� �)� .

Proof sketch. We can bound the actual regret after � time steps as follows. From (1) and
the definition of the filtering rule we have

�*
�,+ � -.�&
 � �4,
 � ��
�� �8' � ��01�5� � �*

�,+ � -��4
 � 
/0:�5��	 ��D 
CD �* �,+ � -.- �4, 
 � �,
�� �8' � ��
 = �0/
= ��D 
CD21 �*

�,+ � -435� �%$ � = �6 "! �
, 
  � ��
��87 � �*

�,+ � -43!, 
 � �,
�� 
 = ���9� �%$ � � �6 (! �
,
  � ��
��875:

	 ��D 
CD � � � ;6<�� � �A� �=;�> � � �



Without loss of generality, assume � � � . We now bound ���=; <�� and � � ;6> � separately.
Since � �%$ � = ���� "! ����� ,
  � ��
�� implies that � � 	 � �%$ ����� , we have that ;6< � �

implies��� � � for some � � � . Hence we can write; < = �
�

�*
�,+���� � 3 � �%$ � = �6 (! �

,
  � ��
�� �9� �%$ � � � 7 = � � �*
�,+���� � �%$ �* � +�� 3	� = �6 "! �

, 
  � 7
= �

�
�*

�,+���� � �%$ �* � +�� 
�� � = ��
� (! �
  �� � - D ,
�� D = D 
CD � �9/��
= �

�
�*

�,+���� � �%$ �* � +�� - D , 
 � D = D 
CD ��� / for
� � � ��
� "!�� ��� 
  � �

= �
�

�*
�,+���� � �%$ �* � +�� - D , 
�� � 
CD>� D 
CD � � / �

Applying Chernoff-Hoeffding [11] bounds to , 
�� , which is a sum of � ����� � ����� � �@� -valued
independent random variables, we obtain

�!�=;�<�� = � ��� �
�,+���� � � �%$ �� +�� -��2D , 
���� 
CD>� D 
CD ����� = ����� � ��! � � �

We now bound � � ;6> � by adapting a technique from [8]. Let "#�%$ � 	'& � � ��  � � , "(�)$ � 	& � � �* �� + � � ,, �)$ � 	 * - +/. �� $ * - +�. � � We have

;�> =
�*
�,+ � - D ,
 � ��
�� � 
CD>��" � ��
�� $ � D 
CD / � �*

�,+ �10 " � ��
�� $ � � ,, � �,
�� $ �32
�

�*
�,+ � 3 ,, � �,
�� $ ��� � �9� �%$ � � �6 (! �

,
  � ��
��87
= �

�*
�,+ � �%$ �* � +54 - D , 
 � � 
CD@��" �)$ � D 
CD / � �*

�,+ � 3 ,, � ��
�� $ �.� � � � �%$ � � �6 (! �
,
  � ��
�� 7

	 ;76 � ;78 �
Applying Chernoff-Hoeffding bounds again, we get � �=;96�� = � � �

�,+ � � � = �C� � �  (!�� � �
Finally, one can easily verify that ;:8 	 � . Piecing everything together we get the desired
result. ;
4 Linear least squares filtering

In order to generalize SIMPLE-FIL to the original (unrestricted) learning model described
in Section 2, we need a low-variance estimate of the target vector � . Let < � be the matrix
whose columns are the forwarded feature vectors after the first � time steps and let = �
be the vector of corresponding observed relevance labels (the index � will be momentarily
dropped). Note that �>= 	?< � � holds. Consider the least squares estimator �@<A< � �!BC<D=
of � , where �E<A< � ��B is the pseudo-inverse of <D< � . For all � belonging to the column
space of < , this is an unbiased estimator of � , that is �GFB�@<D< � �!BC<H=JI 	E�E<A< � ��B%</�>= 	
�@<A< � ��B%<A< � � 	 � � To remove the assumption on � , we make <D< � full rank by adding
the identity K . This also allows us to replace the pseudo-inverse with the standard inverse,
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Figure 1: � -measure for each one of the 34 filtering tasks. The � -measure is defined by �������	�
���
��
 , where � is precision (fraction of relevant documents among the forwarded ones) and � is recall
(fraction of forwarded documents among the relevant ones). In the plot, the filtering rule RIDGE-FIL

is compared with RIDGE-FULL which sees the correct label after each classification. While precision
and recall of RIDGE-FULL are balanced, RIDGE-FIL’s recall is higher than precision due to the need
of forwarding more documents than believed relevant. This in order to make the confidence of the
estimator converge to 1 fast enough. Note that, in some cases, this imbalance causes RIDGE-FIL to
achieve a slightly better � -measure than RIDGE-FULL.

obtaining �@K � <D< � � $ � <D= , a “sparse” version of the ridge regression estimator [12] (the
sparsity is due to the fact that we only store in < the forwarded instances, i.e., those for
which we have a relevance labels). To estimate directly the margin ��� � , rather than � ,
we further modify, along the lines of the techniques analyzed in [3, 6, 15], the sparse ridge
regression estimator. More precisely, we estimate � � � � with the quantity % �� � � , where
the % � is defined by

% � 	 � K ��< �%$ � < ��%$ � � � � � �� � $ � < �%$ � = �%$ � � (3)

Using the Sherman-Morrison formula, we can then write out the expectation of % �� � � as

��F4% �� � �EI 	 ��� � � $ ������� ��� �,
�� � ���
���� 
�� � �� � � �� ��� ��� �,
�� � ���
�� � 
�� � � � which holds for all � , � � , and all matrices< �%$ � . Let � �%$ � be the number of forwarded instances among ��� ������� � � �%$ � . In order to
generalize to the estimator (3) the analysis of SIMPLE-FIL, we need to find a large deviation
bound of the form -8$BD % �� � � �A+ � D'� , � � �%$ � 	?� ) 	��>� � � � for all , � � , where �>� � �
goes to zero “sufficiently fast” as �4� � . Though we have not been able to find such
bounds, we report some experimental results showing that algorithms based on (3) and
inspired by the analysis of SIMPLE-FIL do exhibit a good empirical behavior on real-world
data. Moreover, in Section 4.2 we prove a bound (not based on the analysis of SIMPLE-FIL)
on the expected regret of a randomized variant of the algorithm used in the experiments.
For this variant we are able to prove a regret bound that scales essentially with the square
root of � (to be contrasted with the logarithmic regret of SIMPLE-FIL).

4.1 Experimental results

We ran our experiments using the filtering rule that forwards � � if SGN �;% �� � � �8' � � 	 � ,
where % � is the estimator (3) and ' � 	���� ���� "! �����#� �%$ � � Note that this rule, which we call
RIDGE-FIL, is a natural generalization of SIMPLE-FIL to the unrestricted learning model; in
particular, SIMPLE-FIL uses a relevance threshold '�� of the very same form as RIDGE-FIL,
although SIMPLE-FIL’s “margin” , 
 is defined differently. We tested our algorithm on a



Algorithm: P-RIDGE-FIL.
Parameters: Real " �:� ; 	 �A� ����� � .
Initialization: % � 	E�4� ������� �B�5� , �
� 	 "�K�< � 	�� , � 	 � .
Loop for ��	�� �����������

1. Get � ��� � � and let ,+ ��	9% ���� � .
2. If ,+ � �9� then forward � � , get label � � and update as follows:
%��� 	 % � � � � � � ,+ � ��� $ �� � � ;< � � � 	 � < � � � �	�
� � � � 	 < � � � < �� � � ;
% � � � 	E��� � � � �
� K@� $ � � � � �<%��� , where � 	 � if D D %���3D D = � and � �9� is such
that D D % � � � D D�	 � , otherwise;
������� � .

3. Else forward � � with probability 	 . If � � was forwarded then get label � � and do
the same updates as in 2; otherwise, do not make any update.

Figure 2: Pseudo-code for the filtering algorithm P-RIDGE-FIL. The performance of this
algorithm is analyzed in Theorem 3.

document filtering problem based on the first 70000 newswire stories from the Reuters
Corpus Volume 1. We selected the 34 Reuters topics whose frequency in the set of 70000
documents was between 1% and 5% (a plausible range for filtering applications). For
each topic, we defined a filtering task whose relevance judgements were assigned based
on whether the document was labelled with that topic or not. Documents were mapped
to real vectors using the bag-of-words representation. In particular, after tokenization we
lemmatized the tokens using a general-purpose finite-state morphological English analyzer
and then removed stopwords (we also replaced all digits with a single special character).
Document vectors were built removing all words which did not occur at least three times in
the corpus and using the TF-IDF encoding in the form � � �  "! TF �' (!7� � � DF � , where TF is
the word frequency in the document, DF is the number of documents containing the word,
and � is the total number of documents (if TF 	 � the TF-IDF coefficient was also set to
� ). Finally, all document vectors were normalized to length 1. To measure how the choice
of the threshold ' � affects the filtering performance, we ran RIDGE-FIL with ' � set to zero
on the same dataset as a standard on-line binary classifier (i.e., receiving the correct label
after every classification). We call this algorithm RIDGE-FULL. Figure 1 illustrates the
experimental results. The average � -measure of RIDGE-FULL and RIDGE-FIL are, respec-
tively, ��� 
�� and ��� ��� ; hence the threshold compensates pretty well the partial feedback in
the filtering setup. On the other hand, the standard Perceptron achieves here a � -measure
of ��� 
�� in the classification task, hence inferior to that of RIDGE-FULL. Finally, we also
tested the apple-tasting filtering rule (see [9, STAP transformation]) based on the binary
classifier RIDGE-FULL. This transformation, which does not take into consideration the
margin, exhibited a poor performance and we did not include it in the plot.

4.2 Probabilistic ridge filtering

In this section we introduce a probabilistic filtering algorithm, derived from the (on-line)
ridge regression algorithm, for the class of linear probabilistic relevance functions. The
algorithm, called P-RIDGE-FIL, is sketched in Figure 2. The algorithm takes " � � and a
probability value 	 as input parameters and maintains a linear hypothesis % � . If % �� � � �
� , then � � is forwarded and % � gets updated according to the following two-steps ridge
regression-like rule. First, the intermediate vector %��� is computed via the standard on-line
ridge regression algorithm using the inverse of matrix � � . Then, the new vector % � � �
is obtained by projecting %��� onto the unit ball, where the projection is taken w.r.t. the



distance function � � � �	�;� �B% � 	 � �4� �(% � � � � � �	�;� �(% � . Note that D D %���/D D = � implies
% � � � 	 %��� . On the other hand, if % �� � � 0 � then � � is forwarded (and consequently
% � is updated) with some probability 	 . The analysis of P-RIDGE-FIL is inspired by the
analysis in [1] for a related but different problem, and is based on relating the expected
regret in a given trial � to a measure of the progress of % � towards � . The following lemma
will be useful.

Lemma 2 Using the notation of Figure 2, let � be the trial when the � -th update oc-
curs. Then the following inequality holds: � � ,+ � �:
 � �  � � �&+ � �:
 � �  = �8 (! � <���� � �� <�� � �
� � �;� ��% � � ��� � � � �;� �B% � � � � , where D �/D denotes the determinant of matrix � and
� � �;� ��% ��	 � �4� �(%"� � � � �;� �8% � .

Proof sketch. From Lemma 4.2 and Theorem 4.6 in [3] and the fact that D ,+ � D = D D % � D D = �� � it follows that � � ,+ � � 
 � �  � � � + � � 
 � �  = �8 (! � < ��� � �� < � � ��� � �;� �B% � � ��� � � � �4� �B% � � � .
Now, the function � � � � �;� �B% � 	 � �4� � % � � � � � � �;� � %"� is a Bregman diver-
gence (e.g., [4, 10]), and it can be easily shown that % � � � in Figure 2 is the projec-
tion of %��� onto the convex set �
	 � � � � D D 	�D D = � � w.r.t. � � � � ; i.e., % � � � 	��
������ ! 	�������� �=� 	 �=� � � � � � � ��	 ��%��� � . By a projection property of Bregman divergences (see,
e.g., the appendix in [10]) it follows that � � � � �4� �B%��� �/��� � � �2�4� ��% � � � � for all � such
that D D � D D = � . Putting together gives the desired inequality. ;
Theorem 3 Let  	 ��� ! � D + � D�	 ��� ! � D � � � � D . For all � � � , if algorithm P-RIDGE-FIL
of Figure 2 is run with1 	 	 � �! � � � � �! � � , then its expected cumulative regret� �
�,+ � -.�&
 � ,+ � 01�2� � � �

�,+ � -.�&
 � + � 09�2� is at most

��" ! �" � �
! �" �  (! $ ��� �-

�
) � � # �
� � �

Proof sketch. If � is the trial when the � -th forward takes place, we define the random
variables $ ��	%� � �;� ��% � � �&� � � � �;� �B% � � � � and ' � 	 �8 (! � <���� � �� <�� � . If no update occurs
in trial � we set $ ��	(' � 	 � . Let ) � be the regret of P-RIDGE-FIL in trial � and ) 6� be
the regret of the update rule % � � % � � � in trial � . If ,+
� �E� , then ��� ) ����	 ��� )
6� � and
� � $ ��� can be lower bounded via Lemma 2. If ,+ ��0 � , then �!� $ ��� gets lower bounded via
Lemma 2 only with probability 	 , while for the regret we can only use the trivial bound
� � ) � � = � . With probability � �4	 , instead, ��� ) � � 	 ��� ) 6� � and � � $ � � 	 � . Let * be a
constant to be specified. We can write

 ?� � ) � � �+*�� � $ � � 	, �� � ) � � ,+ � �:�C� � �+*�� � $ � � ,+ � �1�>� �
�+ ?�!� ) � � ,+
��09�>� ���-*��!� $ � � ,+
��09�>� � � (4)

Now, it is easy to verify that in the conditional space where ,+ � is given we have �!� �&+ � �

 �*�  D ,+
� � 	 � � +  � and ��� � ,+
� � 
 ���  D ,+
� � 	 � ,+ � � +
���  � � � +  � . Thus, using Lemma
2 and Eq. (4) we can write

 ?�!� ) � � �+*�� � $ � � 	. � � ) 6� �?,+ � �1�C� ���+*�� � � �  � ,+ � �A+ � �  �(��� ' � D4,+ � �;���?,+ � �:�C� �
�- �5� � ��	 � ��� ) 6� � ,+ � 01�C� ��� 	C� � � � ,+ � 0:�C� � �
�-*6	�� � � �  � ,+ � � + � �  �(� � ' � D4,+ � �;���?,+ � 01�C� �

1This parametrization requires the knowledge of / . It turns out one can remove this assumption
at the cost of a slightly more involved proof.



This can be further upper bounded by

� � � ,+ � �A+ � �  � �+*�� � �  � ,+ � � + � �  �?,+ � �1�C� ���+*�	�� � �  ��,+ � � + � �  ��,+ � 09�>� �
� *�� � � � ' �5D ,+
� �&� ,+
���9�>� ��� *�	 �!� � � ' �2D ,+
�&� � ,+
�.01�C� ���+ �	�� � � ,+
� 01�C� � � (5)

where in the inequality we have dropped 	 from factor � � � 	?� and combined the resulting
terms � � )
6� � ,+ � 01�C� � and ��� )
6� � ,+ � �9�>� � into ��� )
6� � . In turn, this term has been bounded
as � � )
6� � = �� � � � � � � ,+ � � + � �  � = �" � � � ,+ � � + � �  � by virtue of (2) with ' � 	 � . At this

point we work in the conditional space where ,+
� is given and distinguish the two cases
,+ � �9� and ,+ � 01� . In the first case we have

� �	��	1��� � ,+ � � + � �  D4,+ � �*� � �-* � �2� � *C�!� ' � D4,+ � � = ��� � �+* � �	� � *>��� ' � D4,+ � � �
whereas in the second case we have
���2��	9� � � ,+ � �A+
���  D ,+ � �*� � � � *�	 � �,* 	C� � ' �	D ,+
�&���- '	 = �?� � � � * 	?� � * 	C� � ' �	D ,+
� � �+ '	 �
where in both cases we used � ,+
� �3+
���  = � . We set * 	 � # � and sum over ��	 � ������� ��� .
Notice that � �

�,+ � $ � = -
 D D � D D 	

-
 and that � �

�,+ � ' � = �8 "! � < � � � �� < � � = ���  (! $ ��� �-
�
)

(e.g., [3], proof of Theorem 4.6 therein). After a few overapproximations (and taking the
worst between the two cases ,+ � �1� and ,+ � 01� ) we obtain� �

�,+ �  ?� � ) � � = ��" # � � � # � �� "! $ ��� �-
�
) � "  # �
� "  �

thereby concluding the proof. ;
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