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Abstract

An optoelectronic implementation of a spiking neuron model based on
the FitzHugh-Nagumo equations is presented. A tunable semiconduc-
tor laser source and a spectral filter provide a nonlinear mapping from
driver voltage to detected signal. Linear electronic feedback completes
the implementation, which allows either electronic or optical input sig-
nals. Experimental results for a single system and numeric results of
model interaction confirm that important features of spiking neural mod-
els can be implemented through this approach.

1 Introduction

Biologically-inspired computation paradigms take different levels of abstraction when
modeling neural dynamics. The production of action potentials or spikes has been ab-
stracted away in many rate-based neurodynamic models, but recently this feature has gained
renewed interest [1, 2]. A computational paradigm that takes into account the timing of
spikes (instead of spike rates only) might be more efficient for signal representation and
processing, especially at short time windows [3, 4, 5].

Optics technology provides high bandwidth and massive parallelism for information pro-
cessing. However, the implementation of digital primitives have not as yet proved compet-
itive against the scalability and low power operation of digital electronic gates. It is then
natural to explore the features of optics for different computational paradigms. Artificial
neural networks promise an excellent match to the capabilities of optics, as they emphasize
simple analog operations, parallelism and adaptive interconnection[6, 7, 8, 9].

Optical implementations of Artificial Neural Networks have to deal with the problem of
representing the nonlinear activation functions that define the input-output mappings for
each neuron. Although nonlinear optics has been suggested for implementing neurons,
hybrid optoelectronic systems, where the task of producing nonlinearity is given to the
electronic circuits, may be more practical [10, 11]. In the case of pulsing neurons, the task
seems more difficult still, for instead of a nonlinear static map we are required to imple-
ment a nonlinear dynamical system. Several possibilities for the implementation of pulsed
optical neurons can be considered, including smart pixel pulsed electronic circuits with op-
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tical inputs [12], pulsing laser cavity feedback dynamics [13] and competitive-cooperative
phosphor feedback [14].

In this paper we demonstrate and evaluate an optoelectronic implementation of an artificial
spiking neuron, based on the FitzHugh-Nagumo equations. The proposed implementation
uses wavelength tunability of a laser source and a birefringent crystal to produce a nonlinear
mapping from driving voltage to detected optical output [15]. Linear electronic feedback to
the laser drive current completes the physical implementation of this model neuron. Inputs
can be presented optically or electronically, and output signals are also readily available as
optical or electronic pulses.

This work is organized as follows. Section 2 reviews the FitzHugh-Nagumo equations and
describes the particular optoelectronic spiking neuron implementation we propose here. In
Section 3 we analyze and illustrate dynamical properties of the model. Experimental results
of the optoelectronic system implementing one model are presented in Section 4. Numeric
results that illustrate features of the interaction between models are shown in Section 5.

2 Modified FN Neural Model and optoelectronic implementation

The FitzHugh-Nagumo neuron model [16, 17] is appealing for physical implementation, as
it is fairly simple and completely described by a pair of coupled differential equations:��������	��
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where � is an excitable state variable that exhibits bi-stability as a result of the nonlinear��� �'� term, and � is a linear recovery variable, bringing the neuron back to a resting state.
In the original model proposal, ��� �(� is a third-degree polynomial[16, 17]. This model has
been previously implemented in CMOS integrated electronics [18].

In optical implementation of neural networks, the required nonlinear functions are usually
performed through electronic devices, with adaptive linear interconnection done in the op-
tical domain. We here explore the possibility of optical implementation of the required
nonlinear function ��� )*� by using the nonlinear response of linear optical systems to varia-
tions of the wavelength.

Consider a birefringent material placed between crossed polarizers. Even though propa-
gation of the field through the material is a linear phenomenon (a linear phase difference
among orthogonal polarization components is generated), the output power as a function
of incident wavelength is sinusoidal, according to
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where / is the transimpedance gain of the detector amplifier, 3 is the responsivity (in
A/W), 57�#89
 is the optical power incident on the detector, which is a function of the laser
drive current 8 , F is the optical path difference (OPD) resulting from propagation through
the birefringent material and

H �#89
 is the laser wavelength.

In semiconductor lasers, and Vertical Cavity Surface Emitting Lasers (VCSELs) in par-
ticular, an input current 8 produces a small modulation in the radiation wavelength

H �	8K
 .
Linearizing the LJM H variation in Equation 2, we find a nonlinear mapping from driving
voltage to detected signal:
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Figure 1: a Experimental setup for the wavelength-based nonlinear oscillator, with simpli-
fied view of the electronic feedback. b Experimental evidence of nonlinear mapping from
driver voltage to detected signal (open loop), as a result of wavelength modulation as well
as laser threshold and saturation.

where � is the driving voltage (linearly converted to an input current 8 through the driver
transconductance) and the function P7�	�R
 includes all conversion factors in the detection
process, as well as nonlinear phenomena such as laser threshold and saturation.

A simple nonlinear feedback loop can now be established, by feeding the detected signal
back to the driver. This basic arrangement has been used to investigate chaotic behavior
in delayed-feedback tunable lasers [15] . It is used here as the nonlinearity for an optical
self-pulsing mechanism in order to implement neural-like pulses based on the following
dynamical system ��������	��
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Again � is a fast state variable, and � a relatively slow recovery variable, so that �J� � ��� .
The experimental setup is shown in Figure 1a. Light from the tunable source is collimated
and propagates through a piece of birefringent crystal. The crystal fast and slow axis are
at 45 degrees to the polarizer and analyzer passing axis. The effective propagation length
through the crystal (and corresponding wavelength selectivity) is doubled with the use of a
mirror. A polarizing beam splitter acts as both polarizer and analyzer. A simplified view
of the electronic feedback is also shown. Leaky integrators and linear analog summations
implement the linear part of Equation 4, while the nonlinear response (in intensity) of the
optical filter implements ���#�;
 .
A VCSEL was used as tunable laser source. These vertical-cavity semiconductor lasers
have, when compared to edge-emitting diode lasers, larger separation between longitudinal
modes, more circularly-symmetric beams and lower fabrication costs [19]. As the input
current is increased, the heating of the cavity red-shifts the resonant wavelength [20], and
this is the main mechanism we are exploring for wavelength modulation.

An experimental verification of the expected sinusoidal variation of detected power with
modulation voltage is given in Figure 1b. A slow (800Hz) modulation ramp was applied to
the driver, and the detected power variation was acquired. From this information, the static
transfer function shown in the right part of the figure was calculated. Unlike the experiment
with a DBR laser diode reported by Goedgebuer et al. [15], it is apparent that current
modulation is affecting not only wavelength (and hence effective optical path difference
among polarization components) but overall output power as well. Modulation depth is
limited (non-zero troughs in the sinusoidal variation), which we attribute to the multiple
transverse modes that the device supports. However, as we are going to be operating near



Figure 2: Continuous line: trajectory of the system under strong input, obtained by nu-
meric integration ( �

.��
-order Runge-Kutta) of Equation 4. Arrows represent the strength of

the derivatives at a particular point in state space. Dashed line: nullcline ������ . Dash-
dotted line: nullcline �� ��� . Stability analysis show that the equilibrium point where the
nullclines meet is unstable, so the limit cycle is the sole attractor. Parameters � � � L � ��� , 0� L � , % � � L��	� , � �
� �	��� V, T W �
� � ���
� V, T�VC��� �?L�� � V.

the first maximum (see Section 3), the power variation over successive maxima should not
affect the dynamical properties of the closed-loop system. The relatively smooth curve
obtained indicates that no mode hops occurred for this driving current range, which was
indeed confirmed with Optical Spectrum Analyzer measurements.

3 Simulations

FitzHugh-Nagumo models are known to have so-called class II neural excitability (see [21]
for a review). This class is characterized by an Andronov-Hopf bifurcation for increasing
excitation, and exhibits some dynamical phenomena that are not present in integrate-and-
fire dynamics. For equal intensity input pulses, integrators will respond maximally to the
pulse train with lowest inter-spike interval. Class II neurons have resonant response to a
range of input frequencies. There are non-trivial forms of excitation in resonator mod-
els that are not matched by integrators: the former can produce a spike at the end of an
inhibitory pulse, and conversely, can have a limit cycle condition interrupted (with the sys-
tem recovering to rest) by an excitatory pulse.

We have verified that these characteristics are maintained in the modified optical model,
despite the use of a sinusoidal nonlinearity instead of the original ���

+
degree polynomial

function. Stability analysis based on the Jacobian of the dynamical system (Equation 4)
shows an Andronov-Hopf bifurcation, as in the original model. Limit cycle interruption
through exciting pulses is shown in Section 5.

Figure 2 shows a typical limit-cycle trajectory, for parameter values that match conditions
of the experiment reported in Section 4. Parameters were chosen so that a typical excursion
in modulation voltage goes from the dead zone (below the lasing threshold) to around the
first peak in the nonlinear detector transfer function. This is an interesting choice because
the optical output is only present during spiking, and can be used directly as an input to
other optoelectronic neurons.
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Figure 3: Dynamical system response to strong constant input. a Simulation results. Pa-
rameters as in Figure 2. b Experimental results. Parameters: � � ��� �SL ms, � � � L ms.
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Figure 4: (a): Simulated response to a train of pulses. Parameters as in Figure 2. (b):
Experimental Results. Parameters as in Figure 3.

4 Experimental Results

Figure 3 presents a comparison between simulated waveforms for the various dynamic
variables involved (as the system performs the trajectory depicted in Figure 2) and the
experimental results obtained with the system described in Figure 1, revealing a good
agreement between simulated and experimental waveforms. The double-peak in the op-
tical variable can be understood by following the trajectory indicated in Figure 2, bearing
in mind the non-monotonic mapping from driver voltage to detected signal. The decrease in
driver voltage observed as the recovery variable � increases produces initially an increase
in detected power, and thus the second, broader peak at the end of the cycle.

The production of sustained oscillations for constant input is one of the desired characteris-
tics of the model, but in a network, neurons will mostly communicate through their pulsed
output. The response of the system to pulsed inputs can be seen in Figure 4. The output
optical signal response is all-or-none, but sub-threshold integration of weak inputs is being
performed, as the waveform for driver voltage shows in the first pulse. As � slowly returns
to 0, a new excitation just after a pulse is less likely, which can be seen at the response to
the third pulse. The experimentally observed waveforms agree with the simulations, though
details of the pulsing in the optical output are different.
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Figure 5: Numeric illustration of the effect of input timing on the advance of the next spike,
in the modified FitzHugh-Nagumo system. a: Schematic view of simulation. See text for
details. b: Phase advance as a function of input phase. Bias 0.103V. Input pulse height
10 mV, duration L � � � . Dynamic system parameters as in Figure 2.

5 Coupling

One of the main motivations for using optical technology in neural network implementation
is the possibility of massive interconnection, and so the definition of coupling techniques,
and the study of adaptation algorithms compatible with the dynamical properties of the
experimentally-demonstrated oscillators are the current focus of this research.

The most elegant optical implementation of adaptive interconnection is through dynamic
volume holography[6, 11], but that requires a set of coherent optical signals, not what we
have with an array of pulse emitters. In contrast, the matrix-vector multiplier architecture
allows parallel interconnection of incoherent optical signals, and has been used to demon-
strate implementations of the Hopfield model [7] and Boltzman machines [9].

An interesting aspect of the coupled dynamics in oscillators exhibiting class II excitability
is that the timing of an input pulse can result in advance or retardation of the next spike [22].
This is potentially relevant for hardware implementation, as the excitatory (i.e., inducing an
early spike) or inhibitory character of the connection might be controlled without changing
signs of the coupling strength.

In Figure 5 we show a simulation illustrating the effect of input pulse timing in advancing
the output spike. A constant input to a model neuron (Equation 4) was maintained, pro-
ducing periodic spiking. A second, positive, pulsed input was activated in between spikes,
and the effect of this coupling on the advance or retardation of the next spike was verified
as the timing of the input was varied. A region of output spike retardation ( ������� � ) with
excitatory pulsed input can be seen. Even more interesting, for phases around D rad relative
to the latest spike, the excitatory pulse can terminate periodic spiking altogether.

This phenomenon is seen in detail in Figure 6, where both the time waveforms and state-
space trajectories are shown. For this particular condition, the equilibrium point of the
system is stable. When correctly timed, the short excitatory pulse forces the system out
of its limit cycle, into the basin of attraction of the stable equilibrium, hence stopping the
periodic spiking. As the individual models used in this simulations were shown to match
experimental implementations in Section 4, we expect to observe the same kind of effect
in the coupling of the optoelectronic oscillators.
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Figure 6: (a): Simulated response illustrating return to stability with excitatory pulse. � �� �SL'L�� . Other parameters as in Figure 2. (b): Same results in state space. Continuous line:
Unperturbed trajectory. Dotted Line: Trajectory during excitatory pulse.

6 Ongoing work and conclusions

Implementation of a modified FN neuron model with a nonlinear transfer function realized
with a wavelength-tuned VCSEL source, a linear optical spectral filter and linear elec-
tronic feedback was demonstrated. The system dynamical behavior agrees with simulated
responses, and exhibits some of the basic features of neuron dynamics that are currently
being investigated in the area of spiking neural networks.

Further experiments are being done to demonstrate coupling effects like the ones described
in Section 5. In particular, the use of external optical signals directly onto the detector
to implement optical coupling has been demonstrated. Feedback circuit simplification is
another important aspect, since we are interested in implementing large arrays of spiking
neurons. With enough detection gain, Equation 4 should be implementable with simple
RLC circuits, as in the original work by Nagumo[17].

Results reported here were obtained at low frequency (1-100 KHz), limited by amplifier
and detector bandwidths. With faster electronics and detectors, the limiting factor in this
arrangement would be the time constant for thermal expansion of the VCSEL cavity, which
is around 1 ��� . Pulsing operation at 1.2 MHz has been obtained in our latest experiments.

Even faster operation is possible when using the internal dynamics of wavelength modu-
lation itself, instead of external electronic feedback. In addition to the thermally-induced
modulation of wavelength, carrier injection modifies the index of refraction of the active re-
gion directly, which results in an opposite wavelength shift. By using this carrier injection
effect to implement the recovery variable, feedback electronics is simplified and a much
faster time constant controls the model dynamics. Optical coupling of VCSELs has the
potential to generate over 40GHz pulsations [23]. Our goal is to investigate those optical
oscillators as a technology for implementing fast networks of spiking artificial neurons.
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