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Abstract 

Side-chain prediction is an important subtask in the protein-folding 
problem. We show that finding a minimal energy side-chain con­
figuration is equivalent to performing inference in an undirected 
graphical model. The graphical model is relatively sparse yet has 
many cycles. We used this equivalence to assess the performance of 
approximate inference algorithms in a real-world setting. Specifi­
cally we compared belief propagation (BP), generalized BP (GBP) 
and naive mean field (MF). 
In cases where exact inference was possible, max-product BP al­
ways found the global minimum of the energy (except in few cases 
where it failed to converge), while other approximation algorithms 
of similar complexity did not. In the full protein data set, max­
product BP always found a lower energy configuration than the 
other algorithms, including a widely used protein-folding software 
(SCWRL). 

1 Introduction 

Inference in graphical models scales exponentially with the number of variables. 
Since many real-world applications involve hundreds of variables, it has been im­
possible to utilize the powerful mechanism of probabilistic inference in these appli­
cations. Despite the significant progress achieved in approximate inference, some 
practical questions still remain open - it is not yet known which algorithm to use 
for a given problem nor is it understood what are the advantages and disadvan­
tages of each technique. We address these questions in the context of real-world 
protein-folding application - the side-chain prediction problem. 

Predicting side-chain conformation given the backbone structure is a central prob­
lem in protein-folding and molecular design. It arises both in ab-initio protein­
folding (which can be divided into two sequential tasks - the generation of native­
like backbone folds and the positioning of the side-chains upon these backbones [6]) 
and in homology modeling schemes (where the backbone and some side-chains are 
assumed to be conserved among the homologs but the configuration of the rest of 
the side-chains needs to be found). 



Figure 1: Cow actin binding protein (PDB code 1pne, top) and closer view of its 6 
carboxyl-terminal residues (bottom-left). Given the protein backbone (black) and 
amino acid sequence, native side-chain conformation (gray) is searched for. Problem 
representation as a graphical model for those carboxyl-terminal residues shown in 
the bottom-right figure (nodes located at COl atom positions, edges drawn in black). 

In this paper, we show the equivalence between side-chain prediction and inference 
in an undirected graphical model. We compare the performance of BP, generalized 
BP and naive mean field on this problem as well as comparing to a widely used 
protein-folding program called SCWRL. 

2 The side-chain prediction problem 

Proteins are chains of simpler molecules called amino acids. All amino acids have 
a common structure - a central carbon atom (COl) to which a hydrogen atom, 
an amino group (N H 2 ) and a carboxyl group (COOH) are bonded. In addition, 
each amino acid has a chemical group called the side-chain, bound to COl. This 
group distinguishes one amino acid from another and gives its distinctive properties. 
Amino acids are joined end to end during protein synthesis by the formation of 
peptide bonds. An amino acid unit in a protein is called a residue. The formation 
of a succession of peptide bonds generate the backbone (consisting of COl and its 
adjacent atoms, N and CO, of each reside), upon which the side-chains are hanged 
(Figure 1). 



We seek to predict the configuration of all the side-chains relative to the backbone. 
The standard approach to this problem is to define an energy function and use the 
configuration that achieves the global minimum of the energy as the prediction. 

2.1 The energy function 

We adopted the van der Waals energy function, used by SCWRL [3], which approx­
imates the repulsive portion of Lennard-Jones 12-6 potential. For a pair of atoms, 
a and b, the energy of interaction is given by: 

E(a, b) = { -k2 :'0 + k~ 
Emax 

d> Ro 
Ro ~ d ~ k1Ro 
k1Ro > d 

(1) 

where Emax = 10, kl = 0.8254 and k2 = ~~k;' d denotes the distance between 
a and band Ro is the sum of their radii. Constant radii were used for protein's 
atoms (Carbon - 1.6A, Nitrogen and Oxygen - 1.3A, Sulfur - 1.7 A). For two sets 
of atoms, the interaction energy is a sum of the pairwise atom interactions. The 
energy surface of a typical protein in the data set has dozens to thousands local 
minima. 

2.2 Rotamers 

The configuration of a single side-chain is represented by at most 4 dihedral angles 
(denoted Xl,X2,X3 and X4)' Any assignment of X angles for all the residues defines 
a protein configuration. Thus the energy minimization problem is a highly nonlinear 
continuous optimization problem. 

It turns out, however, that side-chains have a small repertoire of energetically pre­
ferred conformations, called rotamers. Statistical analysis of those conformations in 
well-determined protein structures produce a rotamer library. We used a backbone 
dependent rotamer library (by Dunbrack and Kurplus, July 2001 version). Given 
the coordinates of the backbone atoms, its dihedral angles ¢ (defined, for the ith 

residue, by Ci - 1 - Ni - Ci - Ci ) and 'IjJ (defined by Ni - Ci - Ci - NHd were 
calculated. The library then gives the typical rotamers for each side-chain and their 
prior probabilities. 

By using the library we convert the continuous optimization problem into a discrete 
one. The number of discrete variables is equal to the number of residues and the 
possible values each variable can take lies between 2 and 81. 

2.3 Graphical model 

Since we have a discrete optimization problem and the energy function is a sum of 
pairwise interactions, we can transform the problem into a graphical model with 
pairwise potentials. Each node corresponds to a residue, and the state of each node 
represents the configuration of the side chain of that residue. Denoting by {rd an 
assignment of rotamers for all the residues then: 

P({ri}) = !e- +E({r;}) !e -+ L;j E(r;)+E(r;,rj) 
Z Z 

1 
Z II 'lti(ri) II 'ltijh,rj) (2) 

i i ,j 

where Z is an explicit normalization factor and T is the system "temperature" 
(used as free parameter). The local potential 'ltih) takes into account the prior 



probability of the rotamer Pi(ri) (taken from the rotamer library) and the energy 
of the interactions between that rotamer and the backbone: 

\(Ii(ri) = Pi (ri)e-,j,E(ri ,backbone) (3) 

Equation 2 requires multiplying \(I ij for all pairs of residues i, j but note that equa­
tion 1 gives zero energy for atoms that are sufficiently far away. Thus we only need 
to calculate the pairwise interactions for nearby residues. To define the topology of 
the undirected graph, we examine all pairs of residues i, j and check whether there 
exists an assignment ri, rj for which the energy is nonzero. If it exists, we connect 
nodes i and j in the graph and set the potential to be: 

(4) 

Figure 1 shows a subgraph of the undirected graph. The graph is relatively sparse 
(each node is connected to nodes that are close in 3D space) but contains many 
small loops. A typical protein in the data set gives rise to a model with hundreds 
of loops of size 3. 

3 Experiments 

When the protein was small enough we used the max-junction tree algorithm [1] to 
find the most likely configuration of the variables (and hence the global minimum 
of the energy function). Murphy's implementation of the JT algorithm in his BN 
toolbox for Matlab was used [10]. 

The approximate inference algorithms we tested were loopy belief propagation (BP), 
generalized BP (GBP) and naive mean field (MF). 

BP is an exact and efficient local message passing algorithm for inference in singly 
connected graphs [15]. Its essential idea is replacing the exponential enumeration 
(either summation or maximizing) over the unobserved nodes with series of lo­
cal enumerations (a process called "elimination" or "peeling"). Loopy BP, that is 
applying BP to multiply connected graphical models , may not converge due to cir­
culation of messages through the loops [12]. However, many groups have recently 
reported excellent results using loopy BP as an approximate inference algorithm 
[4, 11, 5]. We used an asynchronous update schedule and ran for 50 iterations or 
until numerical convergence. 

GBP is a class of approximate inference algorithms that trade complexity for ac­
curacy [15]. A subset of GBP algorithms is equivalent to forming a graph from 
clusters of nodes and edges in the original graph and then running ordinary BP on 
the cluster graph. We used two large clusters. Both clusters contained all nodes 
in the graph but each cluster contained only a subset of the edges. The first clus­
ter contained all edges resulting from residues, for which the difference between 
its indices is less than a constant k (typically, 6). All other edges were included 
in the second cluster. It can be shown that the cluster graph BP messages can 
be computed efficiently using the JT algorithm. Thus this approximation tries to 
capture dependencies between a large number of nodes in the original graph while 
maintaining computational feasibility. 

The naive MF approximation tries to approximate the joint distribution in equa­
tion 2 as a product of independent marginals qi(ri) . The marginals qi(ri) can be 
found by iterating: 

qi(ri) f- a\(li(ri) exp (L L qj(rj) log \(Iij(ri, rj )) (5) 
JENi rj 



where a denotes a normalization constant and Ni means all nodes neighboring i. 
We initialized qi(ri) to \[Ii(ri) and chose a random update ordering for the nodes. 
For each protein we repeated this minimization 10 times (each time with a different 
update order) and chose the local minimum that gave the lowest energy. 

In addition to the approximate inference algorithms described above, we also com­
pared the results to two approaches in use in side-chain prediction: the SCWRL and 
DEE algorithms. The Side-Chain placement With a Rotamer Library (SCWRL) 
algorithm is considered one of the leading algorithms for predicting side-chain con­
formations [3]. It uses the energy function described above (equation 1) and a 
heuristic search strategy to find a minimal energy conformation in a discrete con­
formational space (defined using rotamer library). 

Dead end elimination (DEE) is a search algorithm that tries to reduce the search 
space until it becomes suitable for an exhaustive search. It is based on a simple 
condition that identifies rotamers that cannot be members of the global minimum 
energy conformation [2]. If enough rotamers can be eliminated, the global mini­
mum energy conformation can be found by an exhaustive search of the remaining 
rotamers. 

The various inference algorithms were tested on set of 325 X-ray crystal structures 
with resolution better than or equal to 2A, R factor below 20% and length up to 300 
residues. One representative structure was selected from each cluster of homologous 
structures (50% homology or more) . Protein structures were acquired from Protein 
Data Bank site (http://www.rcsb.org/pdb). 

Many proteins contain Cysteine residues which tend to form strong disulfide bonds 
with each other. A standard technique in side-chain prediction (used e.g. in 
SCWRL) is to first search for possible disulfide bonds and if they exist to freeze 
these residues in that configuration. This essentially reduces the search space. We 
repeated our experiments with and without freezing the Cysteine residues. 

Side-chain to backbone interaction seems to be much severe than side-chain to side­
chain interaction - the backbone is more rigid than side-chains and its structure 
assumed to be known. Therefore, the parameter R was introduced into the pairwise 
potential equation, as follows: 

\[Io(ro ro) - (e -,f-E(ri ,r;))* 
"J ", J - (6) 

Using R > 1 assigns an increased weight for side-chain to backbone interactions 
over side-chain to side-chain interactions. We repeated our experiments both with 
R = 1 and R > 1. It worth mentioning that SCWRL implicitly adopts a weighting 
assumption that assigns an increased weight to side-chain to backbone interactions. 

4 Results 

In our first set of experiments we wanted to compare approximate inference to 
exact inference. In order to make exact inference possible we restricted the possible 
rotamers of each residue. Out of the 81 possible states we chose a subset whose 
local probability accounted for 90% of the local probability. We constrained the size 
of the subset to be at least 2. The resulting graphical model retains only a small 
fraction of the loops occurring in the full graphical model (about 7% of the loops 
of size 3). However, it still contains many small loops, and in particular, dozens of 
loops of size 3. 

On these graphs we found that ordinary max-product BP always found the global 
minimum of the energy function (except in few cases where it failed to converge). 
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Figure 2: Sum-product BP (top-left), naive MF (top-right) and SCWRL (bottom­
left) algorithms energies are always higher than or equal to max-product BP energy. 
Convergence rates for the various algorithms shown in bottom-right chart. 

Sum-product BP failed to find sum-JT conformation in 1% of the graphs only. In 
contrast the naive MF algorithm found the global minimum conformation for 38% 
of the proteins and on 17% of the runs only. The GBP algorithm gave the same 
result as the ordinary BP but it converged more often (e.g. 99.6% and 98.9% for 
sum-product GBP and BP, respectively). 

In the second set of experiments we used the full graphical models. Since exact 
inference is impossible we can only compare the relative energies found by the 
different approximate inference algorithms. Results are shown in Figure 2. Note 
that, when it converged, max-product BP always found a lower energy configuration 
compared to the other algorithms. This finding agrees with the observation that the 
max-product solution is a "neighborhood optimum" and therefore guaranteed to be 
better than all other assignments in a large region around it [13]. 

We also tried decreasing T , the system "temperature", for sum-product (in the 
limit of zero temperature it should approach max-product) . In 96% of the time, 
using lower temperature (T = 0.3 instead of T = 1) indeed gave a lower energy 
configuration. Even at this reduced temperature, however, max-product always 
found a lower energy configuration. 

All algorithms converged in more than 90% of the cases. However, sum-product 
converged more often than max-product (Figure 2, bottom-right) . Decreasing tem­
perature resulted in lower convergence rate for sum-product BP algorithm (e.g. 
95.7% compared to 98.15% in full size graphs using disulfide bonds). It should be 
mentioned that SCWRL failed to converge on a single protein in the data set. 

Applying the DEE algorithm to the side-chain prediction graphical models dramat­
ically decreased the size of the conformational search space, though, in most cases, 
the resulted space was still infeasible. Moreover, max-product BP was indifferent 
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Figure 3: Inference results - success rate. SCWRL buried residues success rate 
subtracted from sum-product BP (light gray), max-product BP (dark gray) and 
MF (black) rates when equally weighting side-chain to backbone and side-chain to 
side-chain clashes (left) and assigning increased weight for side-chain to backbone 
clashes (right). 

to that space reduction - it failed to converge for the same models and, when 
converged, found the same conformation. 

4.1 Success rate 

In comparing the performance of the algorithms, we have focused on the energy of 
the found configuration since this is the quantity the algorithms seek to optimize. 
A more realistic performance measure is: how well do the algorithms predict the 
native structure of the protein? 

The dihedral angle Xi is deemed correct when it is within 40° of the native (crystal) 
structure and Xl to Xi-l are correct. Success rate is defined as the portion of 
correctly predicted dihedral angles. 

The success rates of the conformations, inferred by both max- and sum-product 
outperformed SCWRL's (Figure 3). For buried residues (residues with relative 
accessibility lower than 30% [9]) both algorithms added 1 % to SCWRL's Xl success 
rate. Increasing the weight of side-chain to backbone interactions over side-chain 
to side-chain interactions resulted in better success rates (Figure 3, right). Freezing 
Cysteine residues to allow the formation of disulfide bonds slightly increased the 
success rate. 

5 Discussion 

Recent years have shown much progress in approximate inference. We believe that 
the comparison of different approximate inference algorithms is best done in the 
context of a real-world problem. In this paper we have shown that for a real­
world problem with many loops, the performance of belief propagation is excellent. 
In problems where exact inference was possible max-product BP always found the 
global minimum of the energy function and in the full protein data set, max-product 
BP always found a lower energy configuration compared to the other algorithms 
tested. 



SCWRL is considered one of the leading algorithms for modeling side-chain confor­
mations. However, in the last couple of years several groups reported better results 
due to more accurate energy function [7], better searching algorithm [8] , or extended 
rotamer library [14]. 

As shown, by using inference algorithms we achieved low energy conformations, 
compared to existing algorithms. However , this leads only to a modest increase in 
prediction accuracy. Using an energy function, which gives a better approximation 
to the "true" physical energy (and particularly, assigns lowest energy to the native 
structure) should significantly improve the success rate. A promising direction for 
future research is to try and learn the energy function from examples. Inference 
algorithms such as BP may play an important role in the learning procedure. 
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