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Abstract

Inner-product operators, often referred to as kernels in statistical learning, de-
fine a mapping from some input space into a feature space. The focus of
this paper is the construction of biologically-motivated kernels for cortical ac-
tivities. The kernels we derive, termed Spikernels, map spike count sequences
into an abstract vector space in which we can perform various prediction tasks.
We discuss in detail the derivation of Spikernels and describe an efficient al-
gorithm for computing their value on any two sequences of neural population
spike counts. We demonstrate the merits of our modeling approach using the
Spikernel and various standard kernels for the task of predicting hand move-
ment velocities from cortical recordings. In all of our experiments all the ker-
nels we tested outperform the standard scalar product used in regression with
the Spikernel consistently achieving the best performance.

1 Introduction

Neuronal activity in primary motor cortex (M) during multi-joint arm reaching movements in 2-
D and 3-D [1, 2] and drawing movements [3] has been used extensively as a test bed for gaining
understanding of neural computations in the brain. Most approaches assume that information is
coded by firing rates, measured on various time scales. The tuning curve approach models the
average firing rate of a cortical unit as a function of some external variable, like the frequency
of an auditory stimulus or the direction of a planned movement. Many studies of motor cortical
areas [4, 2, 5, 3, 6] showed that while single units are broadly tuned to movement direction,
a relatively small population of cells (tens to hundreds) carries enough information to allow
for accurate prediction. Such broad tuning can be found in many parts of the nervous system,
suggesting that computation by distributed populations of cells is a general cortical feature. The
population-vector method [4, 2] describes each cell’s firing rate as the dot product between that
cell’s preferred direction and the direction of hand movement. The vector sum of preferred
directions, weighted by the measured firing rates is used both as a way of understanding what
the cortical units encode and as a means for estimating the velocity vector.

Several recent studies [7, 8, 9] propose that neurons can represent or process multiple parameters
simultaneously, suggesting that it is the dynamic organization of the activity in neuronal popu-
lations that may represent temporal properties of behavior such as the computation of transfor-
mation from ’desired action’ in external coordinates to muscle activation patterns. Some studies



[10, 11, 12] support the notion that neurons can associate and dissociate rapidly to functional
groups in the process of performing a computational task. The concepts of simultaneous encod-
ing of multiple parameters and dynamic representation in neuronal populations, could together
explain some of the conundrums in motor system physiology. These concepts also invite usage
of increasingly complex models for relating neural activity to behavior. Advances in comput-
ing power and recent developments of physiological recording methods allow recording of ever
growing numbers of cortical units that can be used for real-time analysis and modeling. These
developments and new understandings have recently been used to reconstruct movements on the
basis of neuronal activity in real-time in an effort to facilitate the development of hybrid brain-
machine interfaces that allow interaction between living brain tissue and artificial electronic or
mechanical devices to produce brain controlled movements [13, 6, 14, 15, 11, 16, 17]. Cur-
rent attempts at predicting movement from cortical activity rely on modeling techniques such as
cosine-tuning estimation (pop. vector) [18], linear regression [15, 19] and artificial neural nets
[15] (though this study reports getting better results by linear regression). A major deficiency
of standard approaches is poor ability to extract the relevant information from monitored brain
activity in an efficient manner that will allow reducing the number of recorded channels and
recording time.

The paper is organized as follows. In Sec. 2 we describe the problem setting that this paper
is concerned with. In Sec. 3 we introduce and explain the main mathematical tool that we
use, namely, the kernel operator. In Sec. 4 we discuss the design and implementation of a
biologically-motivated kernel for neural activities. We report experimental results in Sec. 5 and
give conclusions in Sec. 6.

2 Problem setting

Consider the case where we monitor instantaneous spike rates from d cortical units during phys-
ical motor behavior of a subject. Our goal is to learn a predictive model of some behavior
parameter with the cortical activity as the input. Formally speaking, lets € R9*7 be a sequence
of instantaneous firing rates from ¢ cortical units consisting of 7" samples altogether. We use s, t
to denote sequences of firing rates and denote by len(s) the length of a sequence s. Let s; be the
ith sample (i.e. instantaneous firing rates) of a sequence s. We also use sz to denote the concate-
nation of s with one more sample . We refer to the instantaneous firing rate of a unit k£ by .
We also need to employ a notation for sub-sequences. The ¢-long prefix s is denoted s.;. Finally,
throughout the work we need to examine a substrings of sequences. We denote by i a vector of
indices into the sequence s where i = (i1,4a,...,4) and 1 < 4 < iy < ... <1, < len(s).

We also need to introduce some notation for target variables we would like to predict. Lety € RT
denote some parameter of the movement that we would like to predict (e.g. the movement
velocity in the z direction, v, ). Our goal is to learn an approximation g; of the form f :
RI*T — RT from neural firing rates to movement parameter. In general, information about
movement can be found in neural activity both before and after the time of movement itself. Our
plan, though, is to design a model that can be used for controlling a neural prosthesis. We will
therefore confine ourselves to causal predictors that use s;.; to predict y;. We therefore would
like to make 7; = f (s1.¢) as close as possible (in a sense that is explained in the sequel) to y;.

3 Kerne methods for regression

A major mathematical notion employed in this paper is kernel operators. Kernel operators al-
low algorithms whose interface to the data is limited to scalar products to employ complicated
premappings of the data into feature spaces by use of kernels. Formally, a kernel is an inner-
product operator K : X x X — R where X is some arbitrary vector space. An explicit way
to describe K is via a mapping ¢ : X — # from X to an inner-products space # such that
K(z,z') = ¢(z) - #(z'). Given a kernel operator we can use it to perform various statistical
learning tasks. One such task is support vector regression (SVR) [20] which attempts to find a
regression function for target values that is linear if observed in the (typically very large) feature
space mapped by the kernel. We give here a brief description of SVR for the the sake of clarity.



Support Vector Regression minimizes Vapnik’s [21] e-insensitive loss function |y — f(x)|, =
max {0, |y — f(x)| — €} which defines a hyperplane with width & around the estimate. Exam-
ples that fall within it’s boundaries are considered well estimated and do not contribute to the
error. Examples outside the tube contribute linearly to the loss. Say ¢(x) is the feature vec-
tor implemented by kernel K(-,x). To estimate a linear (linear in feature space) regression
f(x) = (w - ¢(x)) + b with precision €, one minimizes

% I[wl® +C> " lyi — £ (¢ (x:))].

i=1

This can be written as a constrained minimization problem

minimize T (W, & E%) = % lwl® + CZ (& +¢)
=1
subjectto (W - ¢ (x;) +b) —y; <e+&
yi— (W o (x;) +b) <e+¢

By switching to the dual problem of this optimization problem, it is possible to incorporate the
kernel function, achieving a mapping that may not be feasible by calculating (possibly infinite)
feature vectors ¢(s). For C > 0, € > 0 chosen a-priori, the dual problem is

m m
maximize W(ma*)=  —£Y (of +ai)+ Y (af — )y
i=1 =1
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,j=1

m
subjectto Vi€ {1,...,m}: ;0] €[0,Cland Y (o —af) =0
i=1
The solution of the regression estimate takes the form
m
F() =Y (0] — ai)k(xi,x) +b
i=1
In summary, SVM regression solves a quadratic optimization problem to find a hyperplane in the
kernel induced feature space that best estimates the data for an e-insensitive linear loss function.

4 Spikernels

The quality of SVM learning is highly dependent on how the data is embedded in the feature
space via the kernel operator. For this reason, several studies have been devoted lately to devel-
oping new kernels [22, 23, 24]. In fact, for classification problems, a good kernel would render
the work of the classification algorithm trivial. With this in mind, we develop a kernel for neural
spiking activity.

4.1 Motivation

Our goal in developing a kernel for spike trains is to map similar patterns to nearby areas of the
feature space. Current methods for predicting response variables from neural activities use stan-
dard linear regression techniques (see for instance [15]) or or even replace the time pattern with
mean firing rates. A notable example is the population vector method [18]. Other approaches use
off-the-shelf learning algorithms, intended for general purpose. In the description of our kernel
we attempt to capture some well accepted notions on similarities between spike trains. We make
the following assumptions regarding similarities between spike patterns:
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Figure 1: Illlustrative examples of pattern similarities. Left: bin-by-bin comparison yields small
differences. Middle: patterns with large bin-by-bin differences that can be eliminated with some
time warping. Right: patterns whose suffix (time of interest) is similar and prefix is different.

e The most commonly made assumption is that similar firing patterns may have small differences
in a bin-by-bin comparison. This type of variation is due to inherent noise of any physical system
but also responses to external factors that were not recorded and are not directly related the to
the task performed. On the left-hand side of Fig. 1 we show an example of two patterns that are
bin-wise similar though clearly not identical.

e A cortical population may display highly specific patterns to represent specific information. It
is conceivable that some features of external stimuli are represented by population dynamics that
would be best described as "temporal’ coding.

e Two patterns may be quite different in a simple bin-wise comparison but if they are aligned
by some non-linear time distortion or shifting, the similarity becomes apparent. An illustration
of such patterns is given in the middle plots of Fig. 1. In comparing patterns we would like to
induce a higher score when the time-shifts are small.

e Patterns that are associated with identical values of an external stimulus at time ¢ may be
similar at that time but very different at ¢ £ A when values of the external stimulus for these
patterns are no longer similar (as illustrated on the right-hand-side of Fig. 1).

4.2 Kernel definition

We describe the kernel by specifying the features that make up the feature space. Our construc-
tion of the feature space builds on the work of Lodhi et al. [24]. First, we need to introduce a few
more notations. Let s be a sequence of length I = len(s). The set of all possible n-long index
vectors defining a sub-sequence of s isI,; = {i : i€ Z"1 <i; < ... < i, <len(s)}. Also,
let d(c, 8) denote a bin-wise distance over a pair of samples (firing rates). We also overload no-
tation and denote by d (s;,u) = > _, d(s;,, u) a distance between sequences. The sequence
distance is the sum over the samples constituting the two sequences. Let u, A € (0,1). The u

component of our (infinite) feature vector ¢(s) is defined as,
du(s) = c3 Z ud(shu))\len(S)—il 7 (1)

i€l len(s)

where and C' is a normalization constant that simplifies the calculation and and i, is the first
index of i. In words, ¢,(s) is a sum over all n-long sub-sequences of s. Each sub-sequence
is compared to u (the feature coordinate) and is weighted up according to its similarity to u.
In particular, part of the weight of each sub-sequence of s reflects how concentrated the sub-
sequence is toward the end of s. Put another way, the entry indexed by u measures how close u
is to the time series s near its end.

This definition seems to fit our assumptions on neural coding for the following reasons:

o It allows for complex patterns: small values of A and p (or concentrated d measures) mean that
each coordinate u tends toward being either 1 or 0 depending whether u is almost identical to a
suffix of s or not.



o Patterns that are piece-wise similar to u contribute to the u feature coordinate with a weight
that decays as the sample-by-sample comparison between the sequences grows large.

o \We allow gaps in the indexes defining sub-sequences, thus, allowing for time warping.

e Patterns that begin further from the required prediction time are penalized by an exponentially
decaying weight.

4.3 Efficient kernel calculation

he definition of ¢ given by Eq. (1) requires the manipulation of an infinite feature space. Straight-
forward calculation of the feature values and performing the induced inner-product is clearly
impossible. Based on ideas from [24] we developed an indirect method for evaluating the kernel
through a recursion which can be performed efficiently using dynamic programing. We now
describe the recursion.

Denote by - € RY the last entry in the sequence sz € R4x!en(sz) \We now describe two recursive
equations for ¢ with respect to the length of the time series and the sub-sequence length. Due
to the lack of space we skip some of the algebraic manipulations that are needed to derive the
recursions. The first equation is

Pu(5z) = Apu(s) + Al C2 gy, (s) )

Eq. (2) simply separates the sum over sub-sequences of s into two subsets: one where z is not
specified by the index vectors and the latter where i,, specifies z. The second recursive equation
for ¢ is, again, with respect to both the length of the sub-sequence (u) and the length of the
sequence t,

len(t)

bu(t) = c3 Z plansti) ylen®)—j+1g (t1j-1) 3)

j=1
The last equation simply states that the feature is a sum over all possible values of i,,. Note that
for j < n, I ; is empty. Egs. (2) and (3) are now used for computing the recursion equation for
K:

Ko (sz,t) = /qunqﬁu(sm)qﬁu(t)du

We plug Eg. (2) into ¢u(sz) and plug Eq. (3) into ¢, (t). Using algebraic manipulations we
replace integrals over scalar products of ¢ by the proper kernels and get the following recursive
function,

len(t)

Kn(sz,t) = AKn(s,t) +C 3 NerO-42K, (s, 41 1) /

ud(“n ’w)ud(“n ,t5) dl(é)
R4

j=1
The initial conditions are:
Vs € RXme"(s),t € Rdxlen(t) K0(57 t) =1
if min {len(s),len(t)} <i K;(s,t) =0
Assuming that the computation time of the integral in Eqg. (4) is a constant, computing the entire

recursion requires O (len(s) len®(t)n) time. We can achieve a speed up by a factor of len(t) if
we cache the term on the right hand side of Eq.(4) as follows. Define,

len(ty)
K (sz,ty) = C Z Mentv)=i+2f | (s, (ty)1:5-1) / pan2)+d(n(t9)i) gy, (5)
i=1 R
Separating the above sum into its two parts (one for j = len(ty) and one for the rest), and using
the definition of K’ from Eq.(5) we get the following recursive equation for K,

K, (sz,ty) = AQCKn,l(s,t)/ plns2)+dny) gy 4 K (sz,t) (6)
R4
Vs € ]RXmen(S),t e Rdxlen(t) K(I](S,t) =1
if min {len(s),len(t)} <i Ki(s,t) =0



Finally, the recursive equation for K is,
Ku(sz,t) = MK,(s,t)+ K] (sz,t),
yielding an O (len(s) len(t) n) dynamic programing solution for K, (s, t).

4.4  Spikernel variants.

The kernels defined by Eq.(1) consider only patterns of fixed length (). It makes sense to look
at sub-sequences of various lengths. Since a linear combination of kernels is also a kernel, we
can define our kernel to be

n
K(s,t) =Y q'Ki(s,t); ¢>0 .
i=1
The kernel summation can be interpreted as a concatenation of the feature vectors that these ker-
nels represent. Weighted summation is concatenation of the feature vectors after first multiplying
them by the square root of the weights.
Different choices of d(a, §) result in kernels that differ in the way two rate values are compared.

Say we assign d(c, ) to be the squared ¢> norm: ||a — ﬂ||§ = Ezzl (ax — Bi)”, the integral
in the kernel recursion Eq.(6) becomes:

d
d(u,0)+d(ub) gy, — il 3lle—Bl13
/Rdﬂ Y ( —2lnp e

21
goes to 1. This gain results in a kernel whose computation is numerically unstable. However, we

can easily cancel it with the constant C'. Substituting this result back into Eq.(4) we get
K, (sz,ty) = AQKn,l(s,t)M%HﬂPy”g + \K] (sz,t)

We show results for the ¢, norm.

Note that the constant (— ”nu)d/z, which has an n fold gain affect on K goes to infinity as u

5 Experimental results

Data collection: The data used in this work was recorded from the primary motor cortex of a
rhesus (Macaca mulatta) monkey (~4.5 kg). The animal’s care and surgical procedures accorded
with The NIH Guide for the Care and Use of Laboratory Animals (rev. 1996) and with the
Hebrew University guidelines supervised by the institutional committee for animal care and use.
The monkey sat in a dark chamber, and 8 electrodes were introduced into each hemisphere.
The electrode signals were amplified, filtered and sorted (MCP-PLUS, MSD, Alpha-Omega,
Nazareth, Israel). The data used in this report includes 31 single units and 16 multi-unit channels
(MUA) that were recorded in one session by 16 microelectrodes. The monkey used two planar-
movement manipulanda to control 2 cursors (X and + shapes) on the screen to perform center-out
task. Each trial begun when the monkey centered both cursors on a central circle for 1.0-1.5s.
Either cursor could turn green, indicating the hand to be used in the trial (X for right arm and
+ for the left). Then, (after an additional hold period of 1.0-1.5s) one of eight targets appeared
at a distance of 4 cm from the origin and monkey had to move and reach the target in less than
2s to receive liquid reward. At the end of each session, we examined the activity of neurons
evoked by passive manipulation of the limbs and applied intracortical microstimulation (ICMS)
to evoke movements. The data presented here was recorded in penetration sites where ICMS
evoked shoulder and elbow movements. Penetration locations were verified by MRI (Biospec
Bruker 4.7 Tesla).

Data preprocessing and modeling:  The movements and spike data were preprocessed to cre-
ate a labeled corpus. We used only the data from trials on which the monkey succeeded in the
movement task and examined only the right hand movements. We partitioned the movement and
spike trains into 100ms-long bins to get the spike counts and average hand movement velocities



in each segment. We then normalized the spike counts to achieve a zero mean and a unit variance
for each cortical unit. A labeled example (s, v;) for time ¢ consisted of the X or Y velocity as
the target label and the preceding 1 second (i.e. 10 segments) of spike counts from all (¢) cortical
units as the input sequence s;. In our experiments the number of cortical units ¢ was 47 hence
the matrix of spike counts is of size 47 x 10.

Each kernel employs a few parameters (), y, . . .) and the SVM regression setup requires setting
of two more parameters, (¢ and C). Therefore, the learning task is performed in two stages. First,
we used cross-validation to choose the best parameters using a validation set. Then, we learned to
predict the response variable using SVR. Overall we had 20 minutes of clean cortical recordings
of which we used the first 10 minutes as our validation set for tuning the parameters. The second
half was used for training and testing. The kernels that we tested are the exponential kernel
(K (s, t) = e~=9%) the homogeneous polynomial kernel (K (s, t) = (s - t)¢ , d = 2, 3), the
standard scalar product kernel (K (s, t) = s - t) which boils down to a linear regression, and the
Spikernel.

Accuracy results were obtained by performing 5-fold cross-validation for each kernel. The 5
folds were produced by randomly splitting the data into 5 groups: 4 out of the 5 groups were
used for training and the rest of the data was used for evaluation. This was process was repeated
5 times by using once each fifth of the data as a test set. We computed the correlation coefficient
per fold for each kernel. The per-fold results are shown in Fig. 2A as a scatter plot. Each point
compares the Spikernel score versus one of the adversaries. The Spikernel out-performed the
rest in every single test set. We found out that predicting the v, signal was more difficult than
predicting the v, signal. This may be the result of sampling a population of cortical units that
are tuned more to the left-right directions. The mean results are summarized in Fig. 2B. The
linear regression method (scalar-product kernel) came in last. It seems that both re-mapping
the data by standard kernels and by the Spikernel allow for better prediction models. The or-
dering of the kernels by their mean score is consistent when looking at per-test results, except
for the exponential kernel which is out-performed by linear regression in some of the tests.
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6 Summary

In this paper we described an approach based on recent advances in kernel-based learning for
predicting response variables from neural activities. On the data we collected, all the kernels we
devised outperform the standard scalar product that is used in linear regression. Furthermore,
the Spikernel, a biologically motivated kernel operator for spike counts outperforms all the other
kernels. Our current research is focused in two directions. First, we are investigating the adapta-
tions of the Spikernel to other neural activities such as Local Field Potentials (LFP). Our second
and more challenging goal is to devise statistical learning algorithms that use the Spikernel as



part of a dynamical system that may incorporate bio-feedback. We believe that such extensions
are an important and necessary steps toward operational neural prostheses.
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