
Learning from Infinite Data
in Finite Time

Pedro Domingos Geoff H ulten
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98185-2350, U.S.A.

{pedrod, ghulten} @cs.washington.edu

Abstract

We propose the following general method for scaling learning
algorithms to arbitrarily large data sets. Consider the model
Mii learned by the algorithm using ni examples in step i (ii =
(nl , ... ,nm)) , and the model Moo that would be learned using in­
finite examples. Upper-bound the loss L(Mii' M oo) between them
as a function of ii, and then minimize the algorithm's time com­
plexity f(ii) subject to the constraint that L(Moo , Mii) be at most
f with probability at most 8. We apply this method to the EM
algorithm for mixtures of Gaussians. Preliminary experiments on
a series of large data sets provide evidence of the potential of this
approach.

1 An Approach to Large-Scale Learning

Large data sets make it possible to reliably learn complex models. On the other
hand, they require large computational resources to learn from. While in the past
the factor limit ing the quality of learnable models was typically the quantity of data
available, in many domains today data is super-abundant, and the bottleneck is t he
t ime required to process it. Many algorithms for learning on large data sets have
been proposed, but in order to achieve scalability they generally compromise the
quality of the results to an unspecified degree. We believe this unsatisfactory state
of affairs is avoidable, and in this paper we propose a general method for scaling
learning algorithms to arbitrarily large databases without compromising the quality
of the results. Our method makes it possible to learn in finite time a model that
is essentially indistinguishable from the one that would be obtained using infinite
data.

Consider the simplest possible learning problem: estimating the mean of a random
variable x. If we have a very large number of samples, most of them are probably
superfluous. If we are willing to accept an error of at most f with probability at most
8, Hoeffding bounds [4] (for example) tell us that, irrespective of the distribution of
x, only n = ~(R/f)2 1n(2/8) samples are needed, where R is x's range. We propose
to extend this type of reasoning beyond learning single parameters, to learning
complex models. The approach we propose consists of three steps:

1. Derive an upper bound on the relative loss between the finite-data and
infinite-data models, as a function of the number of samples used in each
step of the finite-data algorithm.

2. Derive an upper bound on the time complexity of the learning algorithm,
as a function of the number of samples used in each step.

3. Minimize the time bound (via the number of samples used in each step)
subject to target limits on the loss.

In this paper we exemplify this approach using the EM algorithm for mixtures of
Gaussians. In earlier papers we applied it (or an earlier version of it) to decision
tree induction [2J and k-means clustering [3J. Despite its wide use, EM has long
been criticized for its inefficiency (see discussion following Dempster et al. [1]), and
has been considered unsuitable for large data sets [8J. Many approaches to speeding
it up have been proposed (see Thiesson et al. [6J for a survey) . Our method can be
seen as an extension of progressive sampling approaches like Meek et al. [5J: rather
than minimize the total number of samples needed by the algorithm, we minimize
the number needed by each step, leading to potentially much greater savings; and
we obtain guarantees that do not depend on unverifiable extrapolations of learning
curves.

2 A Loss Bound for EM

In a mixture of Gaussians model, each D-dimensional data point Xj is assumed to
have been independently generated by the following process: 1) randomly choose a
mixture component k; 2) randomly generate a point from it according to a Gaussian
distribution with mean f-Lk and covariance matrix ~k. In this paper we will restrict
ourselves to the case where the number K of mixture components and the probabil­
ity of selection P(f-Lk) and covariance matrix for each component are known. Given
a training set S = {Xl, ... , X N }, the learning goal is then to find the maximum­
likelihood estimates of the means f-Lk. The EM algorithm [IJ accomplishes this by,
starting from some set of initial means, alternating until convergence between esti­
mating the probability p(f-Lk IXj) that each point was generated by each Gaussian (the

Estep), and computing the ML estimates of the means ilk = 2::;':1 WjkXj / 2::f=l Wjk
(the M step), where Wjk = p(f-Lklxj) from the previous E step. In the basic EM
algorithm, all N examples in the training set are used in each iteration. The goal
in this paper is to speed up EM by using only ni < N examples in the ith itera­
tion, while guaranteeing that the means produced by the algorithm do not differ
significantly from those that would be obtained with arbitrarily large N.

Let Mii = (ill , . . . , ilK) be the vector of mean estimates obtained by the finite-data
EM algorithm (i.e., using ni examples in iteration i), and let Moo = (f-L1, ... ,f-LK) be
the vector obtained using infinite examples at each iteration. In order to proceed,
we need to quantify the difference between Mii and Moo . A natural choice is the
sum of the squared errors between corresponding means, which is proportional to
the negative log-likelihood of the finite-data means given the infinite-data ones:

K K D

L(Mii' Moo) = L Ililk - f-Lkl12 = L L lilkd - f-Lkdl 2 (1)
k=l k=ld=l

where ilkd is the dth coordinate of il, and similarly for f-Lkd.

After any given iteration of EM, lilkd - f-Lkdl has two components. One, which we call
the sampling error, derives from the fact that ilkd is estimated from a finite sample,

while J-Lkd is estimated from an infinite one. The other component, which we call
the weighting error, derives from the fact that , due to sampling errors in previous
iterations, the weights Wjk used to compute the two estimates may differ. Let J-Lkdi

be the infinite-data estimate of the dth coordinate of the kth mean produced in
iteration i, flkdi be the corresponding finite-data estimate, and flkdi be the estimate
that would be obtained if there were no weighting errors in that iteration. Then
the sampling error at iteration i is Iflkdi - J-Lkdi I, the weighting error is Iflkdi - flkdi I,
and the total error is Iflkdi - J-Lkdi 1 :::; Iflkdi - flkdi 1 + Iflkdi - J-Lkdi I·

Given bounds on the total error of each coordinate of each mean after iteration i-I,
we can derive a bound on the weighting error after iteration i as follows. Bounds
on J-Lkd ,i-l for each d imply bounds on p(XjlJ-Lki) for each example Xj, obtained by
substituting the maximum and minimum allowed distances between Xjd and J-Lkd ,i-l

into the expression of the Gaussian distribution. Let P}ki be the upper bound on

P(XjlJ-Lki) , and Pjki be the lower bound. Then the weight of example Xj in mean J-Lki

can be bounded from below by wjki = PjkiP(J-Lk)/ ~~=l P}k'iP(J-LU, and from above

by W}ki = min{p}kiP(J-Lk)/ ~~=l Pjk'iP(J-LU, I}. Let w;t: = W}ki if Xj ::::: 0 and
(+) - - h' d 1 t (-) - -'f > 0 d (-) - + th . W jki - W jki ot erWlse, an e W jki - W jki 1 Xj _ an W jki - W jki 0 erWlse.

Then

Iflkdi - flkdi 1 I
, ~7~1 Wjki Xj I
J-Lkdi - ",ni

uj=l Wjki

{I ", ni (+) II ",ni (-) I} , uj=l W jki Xj , uj=l W jki Xj
max J-Lkdi - ",ni _ ,J-Lkdi - ",ni +

uj=l w jki uj=l w jki

(2) <

A corollary of Hoeffding's [4] Theorem 2 is that, with probability at least 1 - 8, the
sampling error is bounded by

Iflkdi - J-Lkdi 1 :::; (3)

where Rd is the range of the dth coordinate of the data (assumed known 1). This
bound is independent of the distribution of the data, which will ensure that our
results are valid even if the data was not truly generated by a mixture of Gaussians,
as is often the case in practice. On the other hand, the bound is more conserva­
tive than distribution-dependent ones, requiring more samples to reach the same
guarantees.

The initialization step is error-free, assuming the finite- and infinite-data algo­
rithms are initialized with the same means. Therefore the weighting error in
the first iteration is zero, and Equation 3 bounds the total error. From this
we can bound the weighting error in the second iteration according to Equa­
tion 2, and therefore bound the total error by the sum of Equations 2 and 3,
and so on for each iteration until the algorithms converge. If the finite- and
infinite-data EM converge in the same number of iterations m, the loss due to
finite data is L(Mii" Moo) = ~f= l ~~=llflkdm - J-Lkdml 2 (see Equation 1). As­
sume that the convergence criterion is ~f=l IIJ-Lki - J-Lk ,i- 111 2 :::; f. In general

1 Although a normally distributed variable has infinite range, our experiments show
that assuming a sufficiently wide finite range does not significantly affect the results.

(with probability specified below), infinite-data EM converges at one of the iter­
ations for which the minimum possible change in mean positions is below ,,/, and
is guaranteed to converge at the first iteration for which the maximum possible
change is below "(. More precisely, it converges at one of the iterations for which

~~=l ~~=l (max{ IPkd,i- l - Pkdil-IPkd,i - l - ftkd,i - ll-IPkdi - ftkdil, O})2 ::; ,,/, and
is guaranteed to converge at the first iteration for which ~~=l ~~=l (IPkd,i-l -
Pkdil + IPkd,i-l - ftkd ,i-ll + IPkdi - ftkdil)2 ::; "/ . To obtain a bound for L(Mn, Moo),
finite-data EM must be run until the latter condition holds. Let I be the set of
iterations at which infinite-data EM could have converged. Then we finally obtain

where m is the total number of iterations carried out. This bound holds if all of
the Hoeffding bounds (Equation 3) hold. Since each of these bounds fails with
probability at most 8, the bound above fails with probability at most 8* = K Dm8
(by the union bound). As a result, the growth with K, D and m of the number
of examples required to reach a given loss bound with a given probability is only
O(v'lnKDm).

The bound we have just derived utilizes run-time information, namely the distance
of each example to each mean along each coordinate in each iteration. This allows it
to be tighter than a priori bounds. Notice also that it would be trivial to modify the
treatment for any other loss criterion that depends only on the terms IPkdm - ftkdm I
(e.g., absolute loss) .

3 A Fast EM Algorithm

We now apply the previous section's result to reduce the number of examples used
by EM at each iteration while keeping the loss bounded. We call the resulting
algorithm VFEM. The goal is to learn in minimum time a model whose loss relative
to EM applied to infinite data is at most f* with probability at least 1 - 8*. (The
reason to use f* instead of f will become apparent below.) Using the notation of the
previous section, if ni examples are used at each iteration then the running time of
EM is O(KD ~::l ni) , and can be minimized by minimizing ~::l ni. Assume for
the moment that the number of iterations m is known. Then, using Equation 1, we
can state the goal more precisely as follows.

Goal: Minimize ~::l ni, subject to the constraint that ~~=l IIPkm - ftkml12 ::; f*
with probability at least 1 - 8* .

A sufficient condition for ~~=l IIPkm - ftkml12 ::; f* is that Vk IIPkm - ftkmll ::;
Jf*/K. We thus proceed by first minimizing ~::l ni subject to IIPkm - ftkmll ::;
J f* / K separately for each mean.2 In order to do this, we need to express IIPkm -
ftkm II as a function of the ni 'so By the triangle inequality, IIPki - ftki II ::; IIPki - ftki II +
Ilftki - ftk& By Equation 3, Ilftki - ftki II::; ~R2ln(2/8) ~;~l w;kd(~;~l Wjki)2,

where R2 = ~~=l RJ and 8 = 8* / K Dm per the discussion following Equation 4.
The (~;~l Wjki)2 / ~;~l W;ki term is a measure of the diversity of the weights ,

2This will generally lead to a suboptimal solution; improving it is a matter for future
work.

being equal to 1 - l/Gini(W~i)' where W~i is the vector of normalized weights
wjki = wjkd 2:j,i=l Wjl ki. It attains a minimum of! when all the weights but one are
zero, and a maximum of ni when all the weights are equal and non-zero. However,
we would like to have a measure whose maximum is independent of ni, so that it
remains approximately constant whatever the value of ni chosen (for sufficiently
large ni). The measure will then depend only on the underlying distribution of the
data. Thus we define f3ki = (2:7~1 Wjki)2 /(ni 2:7~1 W]ki) ' obtaining IliLki - ILkill :::;

JR2ln(2/8)/(2f3kini). Also, IIP-ki-iLkill = J2:~= llP-kdi - iLkdil 2, with lP-kdi-iLkdil
bounded by Equation 2. To keep the analysis tractable, we upper-bound this term
by a function proportional to IIP-kd,i-1 - ILkd,i-111. This captures the notion than the
weighting error in one iteration should increase with the total error in the previous
one. Combining this with the bound for IliLki - ILkill, we obtain

R2 ln(2/8)
2f3kini

(5)

where CXki is the proportionality constant. Given this equation and IIP-kO - ILkO II = 0,
it can be shown by induction that

m

IIP-km - ILkmll :::; ~ ~ (6)

where

(7)

The target bound will thus be satisfied by minimizing 2::1 ni subject to
2::1 (rkd,;niJ = J E* / K.3 Finding the n/s by the method of Lagrange multi­
pliers yields

ni = ~ (f ~rkir%j) 2

)=1

(8)

This equation will produce a required value of ni for each mean. To guarantee the
desired E*, it is sufficient to make ni equal to the maximum of these values.

The VFEM algorithm consists of a sequence of runs of EM, with each run using
more examples than the last, until the bound L(Mii' Moo) :::; E* is satisfied, with
L(Mii' Moo) bounded according to Equation 4. In the first run, VFEM postulates a
maximum number of iterations m, and uses it to set 8 = 8* / K Dm. If m is exceeded,
for the next run it is set to 50% more than the number needed in the current run.
(A new run will be carried out if either the 8* or E* target is not met.) The number
of examples used in the first run of EM is the same for all iterations, and is set to
1.1(K/2)(R/E*)2ln(2/8). This is 10% more than the number of examples that would
theoretically be required in the best possible case (no weighting errors in the last

3This may lead to a suboptimal solution for the ni's, in the unlikely case that Ilflkm -
Jtkm II increases with them.

iteration, leading to a pure Hoeffding bound, and a uniform distribution of examples
among mixture components). The numbers of examples for subsequent runs are set
according to Equation 8. For iterations beyond the last one in the previous run,
the number of examples is set as for the first run. A run of EM is terminated

when L~= l L~=l (Iflkd ,i- l - flkdi 1 + Iflkd ,i-l - ILkd ,i-l l + Iflkdi - ILkdi 1)2 :s: "((see
discussion preceding Equation 4), or two iterations after L~=l IIILki - ILk ,i-1 11 2 :s:
"(13, whichever comes first. The latter condition avoids overly long unproductive
runs. If the user target bound is E, E* is set to min{ E, "(13}, to facilitate meeting the
first criterion above. When the convergence threshold for infinite-data EM was not
reached even when using the whole training set, VFEM reports that it was unable
to find a bound; otherwise the bound obtained is reported.

VFEM ensures that the total number of examples used in one run is always at least
twice the number n used in the previous run. This is done by, if L ni < 2n, setting
the ni's instead to n~ = 2n(nil L ni). If at any point L ni > mN, where m is the
number of iterations carried out and N is the size of the full training set, Vi ni = N
is used. Thus, assuming that the number of iterations does not decrease with the
number of examples, VFEM's total running time is always less than three times the
time taken by the last run of EM. (The worst case occurs when the one-but-last
run is carried out on almost the full training set.)

The run-time information gathered in one run is used to set the n/s for the next
run. We compute each Ctki as Ilflki - Pkill/llflk ,i-l - ILk ,i-lll. The approximations
made in the derivation will be good, and the resulting ni's accurate, if the means'
paths in the current run are similar to those in the previous run. This may not
be true in the earlier runs , but their running time will be negligible compared to
that of later runs , where the assumption of path similarity from one run to the next
should hold.

4 Experiments

We conducted a series of experiments on large synthetic data sets to compare VFEM
with EM. All data sets were generated by mixtures of spherical Gaussians with
means ILk in the unit hypercube. Each data set was generated according to three
parameters: the dimensionality D , the number of mixture components K , and
the standard deviation (Y of each coordinate in each component. The means were
generated one at a time by sampling each dimension uniformly from the range
(2(Y,1 - 2(Y). This ensured that most of the data points generated were within the
unit hypercube. The range of each dimension in VFEM was set to one. Rather
than discard points outside the unit hypercube, we left them in to test VFEM's
robustness to outliers. Any ILk that was less than (vD 1 K)(Y away from a previously
generated mean was rejected and regenerated, since problems with very close means
are unlikely to be solvable by either EM or VFEM. Examples were generated by
choosing one of the means ILk with uniform probability, and setting the value of
each dimension of the example by randomly sampling from a Gaussian distribution
with mean ILkd and standard deviation (Y. We compared VFEM to EM on 64 data
sets of 10 million examples each, generated by using every possible combination of
the following parameters: D E {4, 8,12, 16}; K E {3, 4, 5, 6} ; (Y E {.01 , .03, .05, .07}.
In each run the two algorithms were initialized with the same means, randomly
selected with the constraint that no two be less than vD 1 (2K) apart. VFEM was
allowed to converge before EM's guaranteed convergence criterion was met (see
discussion preceding Equation 4). All experiments were run on a 1 GHz Pentium
III machine under Linux, with "(= O.OOOlDK, 8* = 0.05, and E* = min{O.Ol, "(} .

Table 1: Experimental results. Values are averages over the number of runs shown.
Times are in seconds, and #EA is the total number of example accesses made by
the algorithm, in millions.

Runs Algorithm #Runs Time #EA Loss D K rr
Bound VFEM 40 217 1.21 2.51 10.5 4.2 0.029

EM 40 3457 19.75 2.51 10.5 4.2 0.029
No bound VFEM 24 7820 43.19 1.20 9.1 4.9 0.058

EM 24 4502 27.91 1.20 9.1 4.9 0.058
All VFEM 64 3068 16.95 2.02 10 4.5 0.04

EM 64 3849 22.81 2.02 10 4.5 0.04

The results are shown in Table 1. Losses were computed relative to the true means,
with the best match between true means and empirical ones found by greedy search.
Results for runs in which VFEM achieved and did not achieve the required E* and
8* bounds are reported separately. VFEM achieved the required bounds and was
able to stop early on 62.5% of its runs. When it found a bound, it was on average
16 t imes faster than EM. When it did not, it was on average 73% slower. The losses
of the two algorithms were virtually identical in both situations. VFEM was more
likely to converge rapidly for higher D's and lower K's and rr's. When achieved,
the average loss bound for VFEM was 0.006554, and for EM it was 0.000081. In
other words, the means produced by both algorithms were virtually identical to
those that would be obtained with infinite data.4

We also compared VFEM and EM on a large real-world data set, obtained by
recording a week of Web page requests from the entire University of Washington
campus. The data is described in detail in Wolman et al. [7], and the preprocessing
carried out for these experiments is described in Domingos & Hulten [3]. The goal
was to cluster patterns of Web access in order to support distributed caching. On a
dataset with D = 10 and 20 million examples, with 8* = 0.05, I = 0.001, E* = 1/3,
K = 3, and rr = 0.01, VFEM achieved a loss bound of 0.00581 and was two orders
of magnitude faster than EM (62 seconds vs. 5928), while learning essentially the
same means.

VFEM's speedup relative to EM will generally approach infinity as the data set
size approaches infinity. The key question is thus: what are the data set sizes at
which VFEM becomes worthwhile? The tentative evidence from these experiments
is that they will be in the millions. Databases of this size are now common, and
their growth continues unabated, auguring well for the use of VFEM.

5 Conclusion

Learning algorithms can be sped up by minimizing the number of examples used in
each step, under the constraint that the loss between the resulting model and the
one that would be obtained with infinite data remain bounded. In this paper we
applied this method to the EM algorithm for mixtures of Gaussians, and observed
the resulting speedups on a series of large data sets.

4The much higher loss values relative to the true means, however, indicate that infinite­
data EM would often find only local optima (unless the greedy search itself only found a
suboptimal match).

Acknowledgments

This research was partly supported by NSF CAREER and IBM Faculty awards to
the first author, and by a gift from the Ford Motor Company.

References

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
Series B, 39:1- 38, 1977.

[2] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings
of the Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 71- 80, Boston, MA, 2000. ACM Press.

[3] P. Domingos and G. Hulten. A general method for scaling up machine learning
algorithms and its application to clustering. In Proceedings of the Eighteenth In­
ternational Conference on Machine Learning, pp. 106-113, Williamstown, MA,
2001. Morgan Kaufmann.

[4] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13- 30, 1963.

[5] C. Meek, B. Thiesson, and D. Heckerman. The learning-curve method applied
to clustering. Technical Report MSR-TR-01-34, Microsoft Research, Redmond,
WA,2000.

[6] B. Thiesson, C. Meek, and D. Heckerman. Accelerating EM for large databases.
Technical Report MSR-TR-99-31, Microsoft Research, Redmond, WA, 2001.

[7] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray, D. Pin­
nel, A. Karlin, and H. Levy. Organization-based analysis of Web-object sharing
and caching. In Proceedings of the Second USENIX Conference on Internet
Technologies and Systems, pp. 25- 36, Boulder, CO, 1999.

[8] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clus­
tering method for very large databases. In Proceedings of the 1996 A CM SIG­
MOD International Conference on Management of Data, pp. 103- 114, Montreal,
Canada, 1996. ACM Press.

