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Abstract 

When constructing a classifier, the probability of correct classifi­
cation of future data points should be maximized. In the current 
paper this desideratum is translated in a very direct way into an 
optimization problem, which is solved using methods from con­
vex optimization. We also show how to exploit Mercer kernels in 
this setting to obtain nonlinear decision boundaries. A worst-case 
bound on the probability of misclassification of future data is ob­
tained explicitly. 

1 Introduction 

Consider the problem of choosing a linear discriminant by minimizing the probabil­
ities that data vectors fall on the wrong side of the boundary. One way to attempt 
to achieve this is via a generative approach in which one makes distributional as­
sumptions about the class-conditional densities and thereby estimates and controls 
the relevant probabilities. The need to make distributional assumptions, however, 
casts doubt on the generality and validity of such an approach, and in discrimina­
tive solutions to classification problems it is common to attempt to dispense with 
class-conditional densities entirely. 

Rather than avoiding any reference to class-conditional densities, it might be useful 
to attempt to control misclassification probabilities in a worst-case setting; that 
is , under all possible choices of class-conditional densities. Such a minimax ap­
proach could be viewed as providing an alternative justification for discriminative 
approaches. In this paper we show how such a minimax programme can be carried 
out in the setting of binary classification. Our approach involves exploiting the 
following powerful theorem due to Isii [6], as extended in recent work by Bertsimas 
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and Sethuraman [2]: 

where y is a random vector, where a and b are constants, and where the supremum 
is taken over all distributions having mean y and covariance matrix ~y. This 
theorem provides us with the ability to bound the probability of misclassifying a 
point, without making Gaussian or other specific distributional assumptions. We 
will show how to exploit this ability in the design of linear classifiers. 

One of the appealing features of this formulation is that one obtains an explicit 
upper bound on the probability of misclassification of future data: 1/(1 + rP). 

A second appealing feature of this approach is that, as in linear discriminant analysis 
[7], it is possible to generalize the basic methodology, utilizing Mercer kernels and 
thereby forming nonlinear decision boundaries. We show how to do this in Section 
3. 

The paper is organized as follows: in Section 2 we present the minimax formulation 
for linear classifiers, while in Section 3 we deal with kernelizing the method. We 
present empirical results in Section 4. 

2 Maximum probabilistic decision hyperplane 

In this section we present our minimax formulation for linear decision boundaries. 
Let x and y denote random vectors in a binary classification problem, with mean 
vectors and covariance matrices given by x '" (x, ~x) and y '" (y, ~y) , respectively, 
where ""," means that the random variable has the specified mean and covariance 
matrix but that the distribution is otherwise unconstrained. Note that x, x , y , Y E 
JRn and ~x, ~y E JRnxn. 

We want to determine the hyperplane aT z = b (a, z E JRn and b E JR) that separates 
the two classes of points with maximal probability with respect to all distributions 
having these means and covariance matrices. This boils down to: 

or, 

max a s.t. inf Pr{ aT x 2: b} 2: a (2) 
a ,a ,b 

max a s.t. 
a,a,b 

1 - a 2: sup Pr{ aT x :s b} 

1- a 2: sup Pr{aT y 2: b} . 

(3) 

Consider the second constraint in (3). Recall the result of Bertsimas and Sethura­
man [2]: 

1 
supPr{aTY2:b}=-d2' with d2 = inf (Y_Yf~y-1(y_y) (4) 

1 + aTy?b 

We can write this as d2 = infcTw>d wT w, where w = ~y -1 /2 (y_y), cT = aT~y 1/2 
and d = b - aTy. To solve this,-first notice that we can assume that aTy :S b (i.e. 
y is classified correctly by the decision hyperplane aT z = b): indeed, otherwise we 
would find d2 = 0 and thus a = 0 for that particular a and b, which can never be 
an optimal value. So, d> o. We then form the Lagrangian: 

£(w, >.) = wT w + >.(d - cT w), (5) 



which is to be maximized with respect to A 2: 0 and minimized with respect to w . 
At the optimum, 2w = AC and d = cT W , so A = -!#c and w = c%c. This yields: 

(6) 

Using (4), the second constraint in (3) becomes 1-0: 2: 1/(I+d2 ) or ~ 2: 0:/(1-0:). 
Taking (6) into account, this boils down to: 

b-aTY2:,,(o:)/aT~ya where ,,(0:)=) 0: (7) V 1-0: 

We can handle the first constraint in (3) in a similar way (just write aT x ::::: b as 
_aT x 2: -b and apply the result (7) for the second constraint). The optimization 
problem (3) then becomes: 

max 0: s.t. 
a ,a,b 

-b + aTx 2: ,,(o:)JaT~xa 

b - aTy 2: "(o:h/aT~ya. 

Because "(0:) is a monotone increasing function of 0:, we can write this as: 

max" s.t. 
""a,b 

b - aTy 2: "JaT~ya. 

From both constraints in (9), we get 

aTy + "JaT~ya::::: b::::: aTx - "JaT~xa, 

which allows us to eliminate b from (9): 

aTy + "JaT~ya::::: aTx - "JaT~xa. 
I<,a 

max" s.t. 

(8) 

(9) 

(10) 

(11) 

Because we want to maximize ", it is obvious that the inequalities in (10) will 
become equalities at the optimum. The optimal value of b will thus be given by 

where a* and "* are the optimal values of a and " respectively. 
constraint in (11), we get: 

aT(x - y) 2:" (JaT~xa+ JaT~ya). 

(12) 

Rearranging the 

(13) 

The above is positively homogeneous in a: if a satisfies (13), sa with s E 114 also 
does. Furthermore, (13) implies aT(x - y) 2: O. Thus, we can restrict a to be such 
that aT(x - y) = 1. The optimization problem (11) then becomes 

max" s.t. 
I<,a 

which allows us to eliminate ,,: 

~ 2: JaT~xa + JaT~ya 
aT (x-Y)=I , 

m~n JaT~xa + JaT~ya s.t. aT(x - y) = 1, 

(14) 

(15) 



or, equivalently 

(16) 

This is a convex optimization problem, more precisely a second order cone program 
(SOCP) [8 ,5]. Furthermore, notice that we can write a = ao +Fu, where U E Il~n-l, 
ao = (x - y)/llx - y112, and F E IRnx (n-l) is an orthogonal matrix whose columns 
span the subspace of vectors orthogonal to x - y. 

Using this we can write (16) as an unconstrained SOCP: 

(17) 

We can solve this problem in various ways, for example using interior-point methods 
for SOCP [8], which yield a worst-case complexity of O(n3 ). Of course, the first and 
second moments of x, y must be estimated from data, using for example plug-in es­
timates X, y, :Ex, :Ey for respectively x, y, ~x, ~y. This brings the total complexity 
to O(ln3 ), where l is the number of data points. This is the same complexity as the 
quadratic programs one has to solve in support vector machines. 

In our implementations, we took an iterative least-squares approach, which is based 
on the following form, equivalent to (17): 

(18) 

At iteration k , we first minimize with respect to 15 and E by setting 15k = II~x 1/2(ao + 
Fuk- d112 and Ek = II~y 1/2(ao + Fuk - 1)112. Then we minimize with respect to U 

by solving a least squares problem in u for 15 = 15k and E = Ek, which gives us 
Uk. Because in both update steps the objective of this COP will not increase, the 
iteration will converge to the global minimum II~xl/2(ao + Fu*)112 + II~yl /2(ao + 
Fu*)lb with u* an optimal value of u. 

We then obtain a* as ao + Fu* and b* from (12) with "'* = l/h/ar~xa* + 
Jar~ya*). Classification of a new data point Znew is done by evaluating 
sign( a;; Znew - b*): if this is + 1, Znew is classified as from class x, otherwise Znew is 
classified as from class y. 

It is interesting to see what happens if we make distributional assumptions; in 
particular, let us assume that x "" N(x, ~x) and y "" N(y, ~y). This leads to the 
following optimization problem: 

max a S.t. -b + aTx ::::: <I>-l(a)JaT~xa 
o:,a ,b 

(19) 

where <I>(z) is the cumulative distribution function for a standard normal Gaussian 
distribution. This has the same form as (8), but now with ",(a) = <I>-l(a) instead 

of ",(a) = V l~a (d. a result by Chernoff [4]). We thus solve the same optimization 

problem (a disappears from the optimization problem because ",(a) is monotone 
increasing) and find the same decision hyperplane aT z = b. The difference lies in 
the value of a associated with "'*: a will be higher in this case, so the hyperplane 
will have a higher predicted probability of classifying future data correctly. 



3 Kernelization 

In this section we describe the "kernelization" of the minimax approach described in 
the previous section. We seek to map the problem to a higher dimensional feature 
space ]Rf via a mapping cP : ]Rn 1-+ ]Rf, such that a linear discriminant in the feature 
space corresponds to a nonlinear discriminant in the original space. To carry out 
this programme, we need to try to reformulate the minimax problem in terms of a 
kernel function K(Z1' Z2) = cp(Z1)T CP(Z2) satisfying Mercer's condition. 

Let the data be mapped as x 1-+ cp(x) ""' (cp(X) , ~cp(x)) and Y 1-+ cp(y) ""' 

(cp(y) , ~cp(y)) where {Xi}~1 and {Yi}~1 are training data points in the classes 
corresponding to x and Y respectively. The decision hyperplane in ]Rf is then given 
by aT cp(Z) = b with a, cp(z) E ]Rf and b E ]R. In ]Rf, we need to solve the following 
optimization problem: 

mln Jr-aT-~-cp-(-x)-a + J aT~cp(y)a s.t. aT (cp(X) - cp(y)) = 1, (20) 

where, as in (12), the optimal value of b will be given by 

b* = a; cp(x) - "'*Jar~cp(x)a* = a; cp(y) + "'*Jar~cp(y)a*, (21) 

where a* and "'* are the optimal values of a and '" respectively. However, we do 
not wish to solve the COP in this form, because we want to avoid using f or cp 
explicitly. 

If a has a component in ]Rf which is orthogonal to the subspace spanned by CP(Xi), 
i = 1,2, ... , N x and CP(Yi), i = 1,2, ... , Ny, then that component won't affect the 
objective or the constraint in (20) . This implies that we can write a as 

N. Ny 

a = LaiCP(Xi) + L;)jCP(Yj). (22) 
i=1 j=1 

Substituting expression (22) for a and estimates ;Pw = J. 2:~1 CP(Xi) , ;p(Y) = 
1 Ny A _ 1 N. .....--.. .....--.. T A _ 

Ny 2:i=l cp(Yi), ~cp(x) - N. 2:i=1 (cp(Xi) - cp(X)) (cp(Xi) - cp(x)) and ~cp(y) -
N .....--.. .....--.. J 2:i~1(CP(Yi) - cp(y))(cp(Yi) - cp(y))T for the means and the covariance matri-

y -

ces in the objective and the constraint of the optimization problem (20), we see 
that both the objective and the constraints can be written in terms of the kernel 
function K(Zl' Z2) = CP(Z1)T cp(Z2) . We obtain: 

T - -
"f (kx - ky) = 1, (23) 

T - N N . -where "f = [a1 a2 ... aN. ;)1 ;)2 ... ;)Ny l , kx E ]R .+ y WIth [kxl i = 

J. 2:f;1 K(xj, Zi), ky E ]RN. +Ny with [kyl i = Jy 2:f~l K(Yj, Zi), Zi = Xi for 

i = 1,2, ... ,Nx and Zi = Yi - N. for i = N x + 1, N x + 2, ... ,Nx + Ny . K is defined 
as: 

K = (Kx -IN.~~) = (*x) 
Ky -lNy ky Ky 

(24) 

where 1m is a column vector with ones of dimension m. Kx and Ky contain 
respectively the first N x rows and the last Ny rows of the Gram matrix K (defined 
as Kij = cp(zdTcp(zj) = K(Zi,Zj)). We can also write (23) as 

- -
Kx I I Ky I T - -m~n II ~"f12 + I .jlV;"f 12 s.t. "f (kx - ky) = 1, (25) 



which is a second order cone program (SOCP) [5] that has the same form as the 
SOCP in (16) and can thus be solved in a similar way. Notice that, in this case, 
the optimizing variable is "f E ~Nz +Ny instead of a E ~n. Thus the dimension of 
the optimization problem increases, but the solution is more powerful because the 
kernelization corresponds to a more complex decision boundary in ~n . 

Similarly, the optimal value b* of b in (21) will then become 

(26) 

where "f* and "'* are the optimal values of "f and", respectively. 

Once "f* is known, we get "'* = 1/ ( J ~z "f;K~Kx"f* + J ~y "f;K~Ky"f* ) and then 
b* from (26). Classification of a new data point Znew is then done by evaluating 

sign(a; <p(znew) -b*) = sign ( (L~l+Ny b*]iK(Zi, Znew) ) - b*) (again only in terms 

of the kernel function): if this is + 1, Znew is classified as from class x , otherwise 
Znew is classified as from class y. 

4 Experiments 

In this section we report the results of experiments that we carried out to test 
our algorithmic approach. The validity of 1 - a as the worst case bound on the 
probability of misclassification of future data is checked, and we also assess the 
usefulness of the kernel trick in this setting. We compare linear kernels and Gaussian 
kernels. 

Experimental results on standard benchmark problems are summarized in Table 1. 
The Wisconsin breast cancer dataset contained 16 missing examples which were not 
used. The breast cancer, pima, diabetes, ionosphere and sonar data were obtained 
from the VCI repository. Data for the twonorm problem data were generated as 
specified in [3]. Each dataset was randomly partitioned into 90% training and 
10% test sets. The kernel parameter (u) for the Gaussian kernel (e-llx-yI12/,,) was 
tuned using cross-validation over 20 random partitions. The reported results are 
the averages over 50 random partitions for both the linear kernel and the Gaussian 
kernel with u chosen as above. 

The results are comparable with those in the existing literature [3] and with those 
obtained with Support Vector Machines. Also, we notice that a is indeed smaller 

Table 1: a and test-set accuracy (TSA) compared to BPB (best performance in [3]) 
and to the performance of an SVM with linear kernel (SVML) and an SVM with 
Gaussian kernel (SVMG) 

Dataset Linear kernel Gaussian kernel BPB SVML SVMG 
a TSA: a TSA: 

Twonorm 80.2 % 96.0 % 83.6 % 97.2 % 96.3 % 95.6 % 97.4 % 
Breast cancer 84.4 % 97.2 % 92.7 % 97.3 % 96.8 % 92.6 % 98.5 % 
Ionosphere 63.3 % 85.4 % 89.9 % 93.0 % 93.7 % 87.8 % 91.5 % 
Pima diabetes 31.2 % 73.8 % 33.0 % 74.6 % 76.1 % 70.1 % 75.3 % 
Sonar 62.4 % 75.1 % 87.1 % 89.8 % 75.9 % 86.7 % 



than the test-set accuracy in all cases. Furthermore, a is smaller for a linear decision 
boundary then for the nonlinear decision boundary obtained via the Gaussian ker­
nel. This clearly shows that kernelizing the method leads to more powerful decision 
boundaries. 

5 Conclusions 

The problem of linear discrimination has a long and distinguished history. Many 
results on misclassification rates have been obtained by making distributional as­
sumptions (e.g., Anderson and Bahadur [1]) . Our results , on the other hand, make 
use of recent work on moment problems and semidefinite optimization to obtain 
distribution-free results for linear discriminants. We have also shown how to ex­
ploit Mercer kernels to generalize our algorithm to nonlinear classification. 

The computational complexity of our method is comparable to the quadratic pro­
gram that one has to solve for the support vector machine (SVM). While we have 
used a simple iterative least-squares approach, we believe that there is much to 
gain from exploiting analogies to the SVM and developing specialized, more effi­
cient optimization procedures for our algorithm, in particular tools that break the 
data into subsets. The extension towards large scale applications is a current fo­
cus of our research, as is the problem of developing a variant of our algorithm for 
multiway classification and function regression. Also the statistical consequences of 
using plug-in estimates for the mean vectors and covariance matrices needs to be 
investigated. 
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