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Abstract 

Drawing on the correspondence between the graph Laplacian, the 
Laplace-Beltrami operator on a manifold , and the connections to 
the heat equation , we propose a geometrically motivated algorithm 
for constructing a representation for data sampled from a low di­
mensional manifold embedded in a higher dimensional space. The 
algorithm provides a computationally efficient approach to non­
linear dimensionality reduction that has locality preserving prop­
erties and a natural connection to clustering. Several applications 
are considered. 

In many areas of artificial intelligence, information retrieval and data mining, one 
is often confronted with intrinsically low dimensional data lying in a very high di­
mensional space. For example, gray scale n x n images of a fixed object taken with 
a moving camera yield data points in rn: n2 . However , the intrinsic dimensionality of 
the space of all images of t he same object is the number of degrees of freedom of 
the camera - in fact the space has the natural structure of a manifold embedded in 
rn: n2 . While there is a large body of work on dimensionality reduction in general, 
most existing approaches do not explicitly take into account the structure of the 
manifold on which the data may possibly reside. Recently, there has been some 
interest (Tenenbaum et aI, 2000 ; Roweis and Saul, 2000) in the problem of devel­
oping low dimensional representations of data in this particular context. In this 
paper , we present a new algorithm and an accompanying framework of analysis for 
geometrically motivated dimensionality reduction. 

The core algorithm is very simple, has a few local computations and one sparse 
eigenvalue problem. The solution reflects the intrinsic geometric structure of the 
manifold. The justification comes from the role of the Laplacian operator in pro­
viding an optimal embedding. The Laplacian of the graph obtained from the data 
points may be viewed as an approximation to the Laplace-Beltrami operator defined 
on the manifold. The embedding maps for the data come from approximations to 
a natural map that is defined on the entire manifold. The framework of analysis 



presented here makes this connection explicit. While this connection is known to 
geometers and specialists in spectral graph theory (for example , see [1, 2]) to the 
best of our knowledge we do not know of any application to data representation 
yet. The connection of the Laplacian to the heat kernel enables us to choose the 
weights of the graph in a principled manner. 

The locality preserving character of the Laplacian Eigenmap algorithm makes it rel­
atively insensitive to outliers and noise. A byproduct of this is that the algorithm 
implicitly emphasizes the natural clusters in the data. Connections to spectral clus­
tering algorithms developed in learning and computer vision (see Shi and Malik , 
1997) become very clear. Following the discussion of Roweis and Saul (2000) , and 
Tenenbaum et al (2000), we note that the biological perceptual apparatus is con­
fronted with high dimensional stimuli from which it must recover low dimensional 
structure. One might argue that if the approach to recovering such low-dimensional 
structure is inherently local , then a natural clustering will emerge and thus might 
serve as the basis for the development of categories in biological perception. 

1 The Algorithm 

Given k points Xl , ... , Xk in ]]{ I, we construct a weighted graph with k nodes, one 
for each point , and the set of edges connecting neighboring points to each other. 

1. Step 1. [Constructing th e Graph] We put an edge between nodes i and j if 
Xi and Xj are "close" . There are two variations: 

(a) [-neighborhoods. [parameter [ E ]]{] Nodes i and j are connected by an 
edge if Ilxi - Xj 112 < f. 

Advantages: geometrically motivated , the relationship is naturally 
symmetric. 
Disadvantages : often leads to graphs with several connected compo­
nents , difficult to choose f. 

(b) n nearest neighbors. [parameter n E 1'::1] Nodes i and j are connected by 
an edge if i is among n nearest neighbors of j or j is among n nearest 
neighbors of i. 
Advantages: simpler to choose, t ends to lead to connected graphs. 
Disadvantages : less geometrically intuitive. 

2. Step 2. [Choosing the weights] Here as well we have two variations for 
weighting the edges: 

(a) Heat kernel. [param eter t E ]]{]. If nodes i and j are connected, put 

Ilxi-X i 11 2 
Wij = e- t 

The justification for this choice of weights will be provided later. 

(b) Simple-minded. [No parameters]. W ij = 1 if and only if vertices i an d 
j are connected by an edge. 
A simplificat ion which avoids the necessity of choosing t. 

3. Step 3. [Eigenmaps] Assume the graph G, constructed above, is connected , 
otherwise proceed with Step 3 for each connected component . 
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Figure 1: The left panel shows a horizontal and a vertical bar. The middle panel 
is a two dimensional representation of the set of all images using the Laplacian 
eigenmaps. The right panel shows the result of a principal components analysis 
using the first two principal directions to represent the data. Dots correspond to 
vertical bars and '+' signs correspond to horizontal bars. 

Compute eigenvalues and eigenvectors for the generalized eigenvector prob­
lem: 

Ly = )'Dy (1) 

where D is diagonal weight matrix , its entries are column (or row, since 
W is symmetric) sums of W , Dii = Lj Wji. L = D - W is the Laplacian 
matrix. Laplacian is a symmetric , positive semidefinite matrix which can 
be thought of as an operator on functions defined on vertices of G. 

Let Yo , ... , Y k -1 be the solutions of equation 1, ordered according to their 
eigenvalues with Yo having the smallest eigenvalue (in fact 0). The image 
of X i under the embedding into the lower dimensional space :Il{m is given by 
(y 1 ( i) , . . . , y m (i)). 

2 Justification 

Recall that given a data set we construct a weighted graph G = (V, E) with edges 
connecting nearby points to each other . Consider the problem of mapping the 
weighted connected graph G to a line so that connected points stay as close together 
as possible. We wish to choose Yi E :Il{ to minimize 

2)Yi - Yj )2Wij 
i ,j 

under appropriate constraints. Let y = (Y1, Y2 , ... ,Yn)T be the map from the graph 
to the real line. First, note that for any y , we have 

(2) 

where as before, L = D - W. To see this , notice that Wij 1S symmetric and 
Dii = Lj Wij . Thus Li ,j(Yi - Yj)2Wij can be written as 

2)Y; + yJ - 2YiYj )Wij = LY; Dii + LyJ Djj - 2 LYiYj Wij = 2yT Ly 
i ,j j i ,j 
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Figure 3: Fragments labeled by arrows in figure 2, from left to right. The first 
contains infinitives of verbs , the second contains prepositions and the third mostly 
modal and auxiliary verbs. We see that syntactic structure is well-preserved. 

Therefore, the minimization problem reduces to finding argminyTDY=lyT Ly. 

The constraint yT Dy = 1 
removes an arbitrary scaling 
factor in the embedding. Ma-
trix D provides a natural 
measure on the vertices of the 
graph. From eq. 2, we see 
that L is a positive semidef-

:·st· -. 
inite matrix and the vector 
y that minimizes the objec­
tive function is given by the 
minimum eigenvalue solution 
to the generalized eigenvalue 
problem Ly = )'Dy. 

Figure 2: 300 most frequent words of the Brown 
corpus represented in the spectral domain. 

Let 1 be the constant func­
tion taking value 1 at each 
vertex. It is easy to see that 1 is an eigenvector with eigenvalue O. If the graph 
is connected , 1 is the only eigenvector for ). = O. To eliminate this trivial solu­
tion which collapses all vertices of G onto the real number 1, we put an additional 
constraint of orthogonality to obtain 

Yopt = argmm yT Dy=l yT Ly 
yTDl=O 

Thus, the solution Y opt is now given by the eigenvector with the smallest non-zero 
eigenvalue. More generally, the embedding of the graph into lR!. m (m > 1) is given 
by the n x m matrix Y = [Y1Y2 ... Yml where the ith row, denoted by Yl, provides 
the embedding coordinates of the ith vertex. Thus we need to minimize 

This reduces now to 

L IIYi - 1j 11 2Wij = tr(yT LY) 
i ,j 

Yopt = argminYT DY=I tr(yT LY) 



For the one-dimensional embedding problem, the constraint prevents collapse onto 
a point. For the m-dimensional embedding problem, the constraint presented above 
prevents collapse onto a subspace of dimension less than m. 

2.1 The Laplace-Beltrami Operator 

The Laplacian of a graph is analogous to the Laplace-Beltrami operator on mani­
folds. 
Consider a smooth m-dimensional 
manifold M embedded in 
lR k. The Riemannian struc-
ture (metric tensor) on the 
manifold is induced by the 
standard Riemannian struc-
ture on lR k. Suppose we have 
a map f : M ----+ lR . The gra­
dient V f( x) (which in local 
coordinates can be written as 
V f( x) = 2::7=1 ltax.) is a 
vector field on the manifold, 
such that for small ox (in a 
local coordinate chart) 

\ 

,/ \ 

Figure 4: 685 speech datapoints plotted in the two 
dimensional Laplacian spectral representation. 

If(x + ox) - f(x)1 ~ I(Vf(x) ,ox)1 ~ IIVf1111ox11 

Thus we see that if IIV fll is small , points near x will be mapped to points near 
f( x). We therefore look for a map that best preserves locality on average by trying 
to find 

Minimizing f IIVf(x)112 corresponds directly to minimizing Lf = ~ 2::ij (li -
M ' 

f j )2W ij on a graph. Minimizing the squared gradient reduces to finding eigen-

functions of the Laplace-Beltrami operator.c. Recall that .c d;j div V(I) , where 
div is the divergence. It follows from the Stokes theorem that -div and V 
are formally adjoint operators, i. e. if f is a function and X is a vector field 
fM (X, V f) = fM div(X)f. Thus 

1M IIV fl12 = 1M .c(l)f 

We see that .c is positive semidefinite and the f that minimizes fM IIV fl12 has to 
be an eigenfunction of .c. 

2.2 Heat Kernels and the Choice of W eight Matrix 

The Laplace-Beltrami operator on differentiable functions on a manifold M is in­
timately related to the heat flow. Let f : M ----+ lR be the initial heat distri­
bution, u(x, t) be the heat distribution at time t (u(x ,O) = f( x) ). The heat 



equation is the partial differential equation ~~ = £u. The solution is given by 
u(x , t) = fM Ht(x, y)f(y) where Ht is the heat kernel - the Green 's function for 
this PDE. Therefore, 

Locally, the heat kernel is approximately equal to the Gaussian , Ht(x, y) ~ 
n Ilx-yl12 .. 

(47rt)-"2e--4-t - where Ilx - yll (x and yare m local coordmates) and tare 
both sufficiently small and n = dim M. Notice that as t tends to 0, the heat 
kernel Ht(x , y) becomes increasingly localized and tends to Dirac's b-function, i.e., 
lim fM Ht(x, y)f(y) = f(x). Therefore , for small t from the definition of the deriva-
t---+D 

tive we have 

1 [ n (llx-Yl1 2 ] £f(x;) ~ -I, f(x) - (47rt)-"2 J
M 

e- - 4t -f(y)dy 

If Xl , ... , Xk are data points on M, the last expression can be approximated by 

Xj 
O< IIX j -X ill<t: 

The coefficient t is global and will not affect the eigenvectors of the discrete 
Laplacian. Since the inherent dimensionality of M may be unknown , we put 
a = t(47rt)¥-. Noticing that the Laplacian of the constant function is zero, we 

immediately have .1 = 
0: 

Ilx ·-x . 11 2 

e ' 4t ' • Notice, however, that we do not 
Xj 

O< IIX j -X ill« 

have to worry about a , since the graph Laplacian L will choose the correct multi­
plier for us. Finally we see how to choose the edge weights for the adjacency matrix 
W: 

3 Examples 

if Ilxi - Xj II < f 

otherwise 

Exalllple 1 - A Toy Vision Exalllple: Consider binary images of vertical and 
horizontal bars located at arbitrary points in the 40 x 40 visual field. We choose 
1000 images, each containing either a vertical or a horizontal bar (500 containing 
vertical bars and 500 horizontal bars) at random. Fig. 1 shows the result of applying 
the Laplacian Eigenmaps compared to PCA. 

Exalllple 2 - Words in the Brown Corpus: Fig. 2 shows the results of an 
experiment conducted with the 300 most frequent words in the Brown corpus - a 
collection of t exts containing about a million words available in electronic format. 
Each word is represented as a vector in a 600 dimensional space using information 
about the frequency of its left and right neighbors (computed from the bigram 
statistics of the corpus). 

Exalllple 3 - Speech: In Fig. 4 we consider the low dimensional representations 
arising from applying the Laplacian Eigenmap algorithm to a sentence of speech 
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Figure 5: A blowup of the three selected regions in figure 4, from left to right. 
Notice the phonetic homogeneity of the chosen regions. Note that points marked 
with the same symbol may arise from occurrences of the same phoneme at different 
points in the utterance. The symbol "sh" stands for the fricative in the word she; 
"aa" ," ao" stand for vowels in the words dark and all respectively; "kcl" ," dcl" ," gcl" 
stand for closures preceding the stop consonants "k" ," d" ," g" respectively. "h#" 
stands for silence. 

sampled at 1kHz. Short-time Fourier spectra were computed at 5 ms intervals 
yielding 685 vectors of 256 Fourier coefficients for every 30 ms chunk of the speech 
signal. Each vector is labeled according to the identity of the phonetic segment it 
belonged to. Fig. 4 shows the speech data points plotted in the two dimensional 
Laplacian representation. The two "spokes" correspond predominantly to fricatives 
and closures respectively. The central portion corresponds mostly to periodic sounds 
like vowels, nasals , and semivowels. Fig. 5 shows three different regions of the 
representation space. 
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