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Abstract
The marriage of Renyi entropy with Parzen density estimation has been
shown to be a viable tool in learning discriminative feature transforms.
However, it suffers from computational complexity proportional to the
square of the number of samples in the training data. This sets a practical
limit to using large databases. We suggest immediate divorce of the two
methods and remarriage of Renyi entropy with a semi-parametric density
estimation method, such as a Gaussian Mixture Models (GMM). This al-
lows all of the computation to take place in the low dimensional target
space, and it reduces computational complexity proportional to square
of the number of components in the mixtures. Furthermore, a conve-
nient extension to Hidden Markov Models as commonly used in speech
recognition becomes possible.

1 Introduction

Feature selection or feature transforms are important aspects of any pattern recognition sys-
tem. Optimal feature selection coupled with a particular classifier can be done by actually
training and evaluating the classifier using all combinations of available features. Obvi-
ously this wrapper strategy does not allow learning feature transforms, because all possible
transforms cannot be enumerated. Both feature selection and feature transforms can be
learned by evaluating some criterion that reflects the “importance” of a feature or a number
of features jointly. This is called the filter configuration in feature selection. An optimal cri-
terion for this purpose would naturally reflect the Bayes error rate. Approximations can be
used, for example, based on Bhattacharyya bound or on an interclass divergence criterion.
These are usually accompanied by a parametric estimation, such as Gaussian, of the densi-
ties at hand [6, 12]. The classical Linear Discriminant Analysis (LDA) assumes all classes
to be Gaussian with a shared single covariance matrix [5]. Heteroscedastic Discriminant
Analysis (HDA) extends this by allowing each of the classes have their own covariances
[9].

Maximizing a particular criterion, the joint mutual information (MI) between the features
and the class labels [1, 17, 16, 13], can be shown to minimize the lower bound of the
classification error [3, 10, 15]. However, MI according to the popular definition of Shannon
can be computationally expensive. Evaluation of the joint MI of a number of variables is
plausible through histograms, but only for a few variables [17]. As a remedy, Principe et
al showed in [4, 11, 10] that using Renyi’s entropy instead of Shannon’s, combined with
Parzen density estimation, leads to expressions of mutual information with computational
complexity of

���������
, where

�
is the number of samples in the training set. This method

can be formulated to express the mutual information between continuous variables and
discrete class labels in order to learn dimension-reducing feature transforms, both linear



[15] and non-linear [14], for pattern recognition. One must note that regarding finding the
extrema, both definitions of entropy are equivalent (see [7] pages 118,406, and [8] page
325).

This formulation of MI evaluates the effect of each sample to every other sample in the
transformed space through the Parzen density estimation kernel. This effect can also called
as the “information force”. Thus large/huge databases are hard to use due to the

����� � �

complexity.

To remedy this problem, and also to alleviate the difficulties in Parzen density estimation
in high-dimensional spaces (

�����
), we present a formulation combining the mutual infor-

mation criterion based on Renyi entropy with a semi-parametric density estimation method
using Gaussian Mixture Models (GMM). In essence, Parzen density estimation is replaced
by GMMs. In order to evaluate the MI, evaluating mutual interactions between mixture
components of the GMMs suffices, instead of having to evaluate interactions between all
pairs of samples. An approach that maps an output space GMM back to input space and
again to output space through the adaptive feature transform is taken. This allows all of the
computation to take place in the target low dimensional space. Computational complexity
is reduced proportional to the square of the number of components in the mixtures.

This paper is structured as follows. An introduction is given to the maximum mutual in-
formation (MMI) formulation for discriminative feature transforms using Renyi entropy
and Parzen density estimation. We discuss different strategies to reduce its computational
complexity, and we present a formulation based on GMMs. Empirical results are presented
using a few well known databases, and we conclude by discussing a connection to Hidden
Markov Models.

2 MMI for Discriminative Feature Transforms

Given a set of training data ���
	 , ��	�
 as samples of a continuous-valued random variable�
, � 	������ , and class labels as samples of a discrete-valued random variable � , � 	������������� �!� � ��" 
��$# �&% �'� �)(

, the objective is to find a transformation (or its parameters * ) to+ 	 �,�.- � �0/�1
such that + 	3254 � *,�$�6	 � that maximizes 7 � �8��9 � , the mutual information

(MI) between transformed data 9 and class labels � . The procedure is depicted in Fig. 1.
To this end, we need to express 7 as a function of the data set, 7 � � + 	 ��� 	 
 � , in a differentiable
form. Once that is done, we can perform gradient ascent on 7 as follows

*;:=<?>@2A*;:CBED F 7F * 25*�:GBED HI 	 J >
F 7F + 	 F + 	F * � (1)

To derive an expression for MI using a non-parametric density estimation method we apply
Renyi’s quadratic entropy instead of Shannon’s entropy as described in [10, 15] because
of its computational advantages. Estimating the density K � + � of 9 as a sum of spherical
Gaussians each centered at a sample + 	 , the expression of Renyi’s quadratic entropy of 9
is L;M � 9 � 2 N)O P'QSRUT6K � + � � � +

2 N)O P'Q �
� � RVTEWX HIY J >

HIZ J >\[ � + N + Y ��] � 7 � [ � + N + Z ��] � 7 �_^` � +
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� �

HIY J >
HIZ J > [ � + Y N + Z ���'] � 7 � � (2)



Above, use is made of the fact that the convolution of two Gaussians is a Gaussian. Thus
Renyi’s quadratic entropy can be computed as a sum of local interactions as defined by the
kernel, over all pairs of samples.

In order to use this convenient property, a measure of mutual information making use of
quadratic functions of the densities would be desirable. Between a discrete variable � and
a continuous variable 9 such a measure has been derived in [10, 15] as follows:7�� � �8��9 � 2 I " RVT K � � � + � � � + B I " RVT6K � � � � K � + � � � + N�� I " RVT K � � � + � K � � � K � + � � + (3)

We use
���

for the number of samples in class K , � Y for � th sample regardless of its class,
and � � Z for the same sample, but emphasizing that it belongs to class K , with index � within
the class. Expressing densities as their Parzen estimates with kernel width ] results in
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� �IZ J >
HIY J > [ � + � Z N + Y � � ] � 7 � (4)

Mutual information 7�� � � + 	 ��� 	 
 � can now be interpreted as an information potential in-
duced by samples of data in different classes. It is now straightforward to derive partialF 7�� F + 	 which can accordingly be interpreted as an information force that other samples
exert to sample + 	 . The three components of the sum give rise to following three compo-
nents of the information force: >�� Samples within the same class attract each other,

� � All
samples regardless of class attract each other, and � � Samples of different classes repel each
other. This force, coupled with the latter factor

F + 	 � F * inside the sum in (1), tends to
change the transform in such a way that the samples in transformed space move into the
direction of the information force, and thus increase the MI criterion 7 � � + 	 ����	 
 � . See [15]
for details.
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Figure 1: Learning feature transforms by maximizing the mutual information between class labels
and transformed features.

Each term in (4) consists of a double sum of Gaussians evaluated using the pairwise dis-
tance between the samples. The first component consists of a sum of these interactions
within each class, the second of all interactions regardless of class, and the third of a sum
of the interactions of each class against all other samples. The bulk of computation consists
of evaluating these

��� �'� Gaussians, and forming the sums of those. Information force, the
gradient of 7 � , makes use of the same Gaussians, in addition to pairwise differences of the
samples [15]. For large

�
, complexity of

����� � �
is a problem. Thus, the rest of the paper

explores possibilities of reducing the computation to make the method applicable to large
databases.



3 How to Reduce Computation?

In essence, we are trying to learn a transform that minimizes the class density overlap in
the output space while trying to drive each class into a singularity. Since kernel density es-
timate results in a sum of kernels over samples, a divergence measure between the densities
necessarily requires

��� � ���
operations. The only alternatives to reduce this complexity are

either to reduce
�

, or to form simpler density estimates.

Two straightforward ways to achieve the former are clustering or random sampling. In
this case clustering needs to be performed in the high-dimensional input space, which may
be difficult and computationally expensive itself. A transform is then learned to find a
representation that discriminates the cluster centers or the random samples belonging to
different classes. Details of the densities may be lost, more so with random sampling, but
at least this might bring the problem down to a computable level.

The latter alternative can be accomplished by a GMM, for example. A GMM is learned
in the low-dimensional output space for each class, and now, instead of comparing sam-
ples against each other, comparing samples against the components of the GMMs suffices.
However, as the parameters of the transform are being learned iteratively, the � + 	 
 will
change at each iteration, and the GMMs need to be estimated again. There is no guarantee
that the change to the transform and to the � + 	_
 is so small that simple re-estimation based
on previous GMMs would suffice. However, this depends on the optimization method used.

A further step in reducing computation is to compare GMMs of different classes in the
output space against each other, instead of comparing the actual samples. In addition to the
inconvenience of re-estimation, we lack now the notion of “mapping”. Nothing is being
transformed by 4 from the input space to the output space, such that we could change
the transform in order to increase the MI criterion. Although it would be possible now
to evaluate the effect of each sample to each mixture component, and the effect of each
component to the MI, that is, � �� � 2 � 	 � Y � ������ ��� ��

T	� � T �� � , due to the double summing, we
will pursue the mapping strategy outlined in the following section.

4 Two GMM Mapping Strategies

IO-mapping. If the GMM is available in the high-dimensional input space, those models
can be directly mapped into the output space by the transform. Let us call this case the
IO-mapping. Writing the density of class K as a GMM with 
 � mixture components and� � Z as their mixture weights we get

K � �
� � � � 2 �
�IZ J > � � Z [ � � N�� � Z ��� � Z � (5)

We consider now only linear transforms. The transformed density in the low-dimensional
output space is then simply

K � + � � � � 2 �
�IZ J > � � Z [ � + N���� � Z ����� � Z � � � (6)

Now, the mutual information in the output space between class labels and the densities as
transformed GMMs can be expressed as a function of � , and it will be possible to evaluateF 7�� F � to insert into (1). A great advantage of this strategy is that once the input space
GMMs have been created (by the EM-algorithm, for example), the actual training data
needs not be touched at all during optimization! This is thus a very viable approach if the
GMMs are already available in the high-dimensional input space (see Section 7), or if it is
not too expensive or impossible to estimate them using the EM-algorithm. However, this
might not be the case.



OIO-mapping. An alternative is to construct a GMM model for the training data in the
low-dimensional output space. Since getting there requires a transform, the GMM is con-
structed after having transformed the data using, for example, a random or an informed
guess as the transform. Density estimated from the samples in the output space for class K
is

K � + � � � � 2 � �IZ J > � � Z [ � + N�� � Z � � � Z � (7)

Once the output space GMM is constructed, the same samples are used to construct a GMM
in the input space using the same exact assignments of samples to mixture components
as the output space GMMs have. Running the EM-algorithm in the input space is now
unnecessary since we know which samples belong to which mixture components. Similar
strategy has been used to learn GMMs in high dimensional spaces [2]. Let us now use
the notation of Eq.(5) to denote this density also in the input space. As a result, we have
GMMs in both spaces and a transform mapping between the two. The transform can be
learned as in the IO-mapping, by using the equalities � � Z 2 ��� � Z and

� � Z 2 ��� � Z � � .
This case will be called OIO-mapping. The biggest advantage is now avoiding to operate
in the high-dimensional input space at all, not even the one time in the beginning of the
procedure.

5 Learning the Transform through Mapped GMMs

We present now the derivation of adaptation equations for a linear transform that apply
to either mapping. The first step is to express the MI as a function of the GMM that
is constructed in the output space. This GMM is a function of the transform matrix � ,
through the mapping of the input space GMM to the output space GMM. The second step
is to compute its gradient

F 7�� F � and to make use of it in the first half of Equation (1).

5.1 Information Potential as a Function of GMMs

GMM in the output space for each class is already expressed in (7). We need the fol-
lowing equalities: K � � � � + � 2�� � K � + � � � � , where � � denotes the class prior, and K � + � 2� H 	� J > K � � � � + � .
Let us denote the three terms in (3) as � ��H , ���	�
� , and N ����� �	
 . Then we have

� � H 2 I " RVT K � � � + � � � + 2 H 	I� J > RUT � �� WX � �I 	!J > � � 	 [ � + N�� � 	$� � � 	 �_^` � � �
2 H 	I� J > � ��

�
�I 	 J >
�
�IZ J > � � 	 � � Z [ � � � 	 N�� � Z � � � 	 B � � Z � (8)

To compact the notation, we change the indexing, and make the substitutions � Y
� 2
� Y N�� � , � Y � 2 � Y B � � , [ � �C��� � 2 [ � � Y
� � � Y
� � , � � �C��� � 2�� Y � � � Y � � [ � � ��� � ,
where �C��� � % ���!� � ��� ( , and

���
is the total number of mixture components, and � ��� 2� Y�� " � � ��� "�� � � �C��� � . Now we can write � � H , ���	�
� , and ��� �	
 in a convenient form.

� ��H 2 H
	I� J > � � � ���	�
�)2 �
H
	I
� J > � �� �

H
	I� J >
H
	I
� J > � ��� ��� �	
 2 H 	I� J > � �

H 	I
� J > � ��� (9)



5.2 Gradient of the Information Potential

As each Gaussian mixture component is now a function of the corresponding input space
component and the transform matrix � , it is straightforward (albeit tedious) to write the
gradient

F 7 � � F � . Since each of the three terms in 7 � is composed of different sums of[ � � ��� � , we need its gradient asFF � [ � �C��� � 2 FF � [ � � Y � � � Y � � 2 FF � [ � ��� Y � ����� Y
� � � � (10)

where the input space GMM parameters are � Y � 2�� Y N�� � and � Y
� 2 � Y B � � with the
equalities � Y
� 2 ��� Y � and

� Y
� 2 ��� Y
� � � .

[ � � ��� � expresses the convolution of two mixture components in the output space. As we
also have those components in the high-dimensional input space, the gradient expresses
how this convolution in the output space changes, as � that maps the mixture compo-
nents to the output space, is being changed. The mutual information measure is defined
in terms of these convolutions, and maximizing it tends to find a � that (crudely stated)
minimizes these convolutions between classes and maximizes them within classes. The
desired gradient of the Gaussian with respect to the transform matrix is as follows:FF � [ � � ��� � 2 N [ � � ��� ����� >Y
� ��� 7.N�� Y
� � � Y
� ��� >Y
��� ��� Y � B � Y
� � � Y ��� (11)

The total gradient
F 7��
� F � can now be obtained simply by replacing [ � �C��� � in (8) and (9)

by the above gradient.

In evaluating 7 � , the bulk of computation is in evaluating the � � � , the componentwise
convolutions. Computational complexity is now

��� � � � �
. In addition, the

F 7�� � F � requires
pairwise sums and differences of the mixture parameters in the input space, but these need
only be computed once.

6 Empirical Results

The first step in evaluating this approach is to compare its performance to the computa-
tionally more expensive MMI feature transforms that use Parzen density estimation. To
this end, we repeated the pattern recognition experiments of [15] using exactly the same
LVQ-classifier. These experiments were done using five publicly available databases that
are very different in terms of the amount of data, dimension of data, and the number of
training instances. For details of the data sets, please see [15]. OIO-mapping was used
with 3-5 diagonal Gaussians per class to learn a dimension-reducing linear transform. Gra-
dient ascent was used for optimization1. Results are presented in Tables 1 - 5. The last
column denotes the original dimensionality of the data set.

As a figure of the overall performance, the average over all five databases and all reduced
dimensions, which ranged from one up to the original dimension minus one, was 69.6% for
PCA, 77.8% for the MMI-Parzen combination, and 77.0% for the MMI-GMM combination
(30 tests altogether). For LDA this figure cannot be calculated since some databases had
a small

� "
and LDA can only produce

� " NA� features. The results are very satisfactory
since the best we could hope for is performance equal to the MMI-Parzen combination.
Thus a very significant reduction in computation caused only a minor drop in performance
with this classifier.

7 Discussion

We have presented a method to learn discriminative feature transforms using Maximum
Mutual Information as the criterion. Formulating MI using Renyi entropy, and Gaussian

1Example video clips can be viewed at http://members.home.net/torkkola/mmi.



Table 1: Accuracy on the Phoneme test data set using LVQ classifier.

Output dimenson 1 2 3 4 6 9 20
PCA 7.6 70.0 76.8 81.1 84.2 87.3 90.0
LDA 5.1 66.0 74.7 80.2 82.8 86.0 -
MMI-Parzen 15.5 68.5 75.2 80.2 82.6 85.3 -
MMI-GMM 21.4 70.4 76.8 80.2 82.6 87.7 -

Table 2: Accuracy on the Landsat test data set using LVQ classifier.

Output dimension 1 2 3 4 9 15 36
PCA 41.2 81.5 85.8 87.8 89.4 90.3 90.4
LDA 42.5 75.7 86.2 87.2 88.8 90.0 -
MMI-Parzen 65.1 82.0 86.4 86.2 87.6 89.5 -
MMI-GMM 65.0 80.4 86.1 88.3 87.4 89.1 -

Table 3: Accuracy on the Letter test data set using LVQ classifier.

Output dimension 1 2 3 4 6 8 16
PCA 4.5 16.0 36.0 53.2 75.2 82.5 92.4
LDA 13.4 38.0 53.1 68.1 80.3 86.3 -
MMI-Parzen 16.4 50.3 62.8 70.9 82.4 88.6 -
MMI-GMM 15.7 42.4 48.3 68.5 80.9 86.6 -

Table 4: Accuracy on the Pipeline data set using LVQ classifier.

Output dimension 1 2 3 4 5 7 12
PCA 41.5 88.0 87.8 89.7 96.4 97.2 99.0
LDA 98.4 98.8 - - - - -
MMI-Parzen 99.4 99.1 98.9 99.2 98.9 99.0 -
MMI-GMM 91.3 98.8 99.1 98.9 99.1 98.7 -

Table 5: Accuracy on the Pima data set using LVQ classifier.

Output dimension 1 2 3 4 5 6 8
PCA 64.4 73.0 75.2 74.1 75.6 74.7 74.7
LDA 65.8 - - - - - -
MMI-Parzen 72.0 77.5 78.7 78.5 78.3 78.3 -
MMI-GMM 73.9 79.7 79.4 77.9 76.7 77.5 -

Mixture Models as a semi-parametric density estimation method, allows all of the compu-
tation to take place in the low-dimensional transform space. Compared to previous formu-
lation using Parzen density estimation, large databases become now a possibility.

A convenient extension to Hidden Markov Models (HMM) as commonly used in speech
recognition becomes also possible. Given an HMM-based speech recognition system,
the state discrimination can be enhanced by learning a linear transform from some high-
dimensional collection of features to a convenient dimension. Existing HMMs can be con-
verted to these high-dimensional features using so called single-pass retraining (compute
all probabilities using current features, but do re-estimation using a the high-dimensional
set of features). Now a state-discriminative transform to a lower dimension can be learned
using the method presented in this paper. Another round of single-pass retraining then
converts existing HMMs to new discriminative features.

A further advantage of the method in speech recognition is that the state separation in the
transformed output space is measured in terms of the separability of the data represented
as Gaussian mixtures, not in terms of the data itself (actual samples). This should be
advantageous regarding recognition accuracies since HMMs have the same exact structure.
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