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Abstract

It is desirable that a complex decision-making problem in an uncer-
tain world be adequately modeled by a Markov Decision Process
(MDP) whose structural representation is adaptively designed by a
parsimonious resources allocation process. Resources include time
and cost of exploration, amount of memory and computational time
allowed for the policy or value function representation. Concerned
about making the best use of the available resources, we address
the problem of efficiently estimating where adding extra resources
is highly needed in order to improve the expected performance of
the resulting policy. Possible application in reinforcement learning
(RL), when real-world exploration is highly costly, concerns the de-
tection of those areas of the state-space that need primarily to be
explored in order to improve the policy. Another application con-
cerns approximation of continuous state-space stochastic control
problems using adaptive discretization techniques for which highly
efficient grid points allocation is mandatory to survive high dimen-
sionality. Maybe surprisingly these two problems can be formu-
lated under a common framework: for a given resource allocation,
which defines a belief state over possible MDPs, find where adding
new resources (thus decreasing the uncertainty of some parame-
ters -transition probabilities or rewards) will most likely increase
the expected performance of the new policy. To do so, we use sam-
pling techniques for estimating the contribution of each parameter’s
probability distribution function (pdf) to the expected loss of us-
ing an approximate policy (such as the optimal policy of the most
probable MDP) instead of the true (but unknown) policy.

Introduction

Assume that we model a complex decision-making problem under uncertainty by
a finite MDP. Because of the limited resources used, the parameters of the MDP
(transition probabilities and rewards) are uncertain: we assume that we only know
a belief state over their possible values. If we select the most probable values of
the parameters, we can build a MDP and solve it to deduce the corresponding
optimal policy. However, because of the uncertainty over the true parameters, this
policy may not be the one that maximizes the expected cumulative rewards of the




true (but partially unknown) decision-making problem. We can nevertheless use
sampling techniques to estimate the expected loss of using this policy. Furthermore,
if we assume independence of the parameters (considered as random variables), we
are able to derive the contribution of the uncertainty over each parameter to this
expected loss. As a consequence, we can predict where adding new resources (thus
decreasing the uncertainty over some parameters) will decrease mostly this loss,
thus improving the MDP model of the decision-making problem so as to optimize
the expected future rewards.

As possible application, in model-free RL we may wish to minimize the amount of
real-world exploration (because each experiment is highly costly). Following [1] we
can maintain a Dirichlet pdf over the transition probabilities of the corresponding
MDP. Then, our algorithm is able to predict in which parts of the state space we
should make new experiments, thus decreasing the uncertainty over some param-
eters (the posterior distribution being less uncertain than the prior) in order to
optimize the expected payoff.

Another application concerns the approximation of continuous (or large discrete)
state-space control problems using variable resolution grids, that requires an effi-
cient resource allocation process in order to survive the “curse of dimensionality”
in high dimensions. For a given grid, because of the interpolation process, the ap-
proximate back-up operator introduces a local interpolation error (see [4]) that may
be considered as a random variable (for example in the random grids of [6]). The
algorithm introduced in this paper allows to estimate where we should add new
grid-points, thus decreasing the uncertainty over the local interpolation error, in
order to increase the expected performance of the new grid representation. The
main tool developed here is the calculation of the partial derivative of useful global
measures (the value function or the loss of using a sub-optimal policy) with respect
to each parameter (probabilities and rewards) of a MDP.

1 Description of the problem

We consider a MDP with a finite state-space X and action-space A. A transition
from a state z, action a to a next state y occurs with probability p(y|z, a) and the
corresponding (deterministic) reward is r(z,a). We introduce the back-up operator
T, defined, for any function W : X — IR, as

T.W(2) = 7Y pyle,a)W(y) +r(z,a) @)
Yy

(with some discount factor 0 < v < 1). It is a contraction mapping, thus the
dynamic programming (DP) equation V(z) = maxgsea T,V (z) has a unique fixed
point V called the value function. Let us define the Q-values Q(z,a) = T,V (z).
The optimal policy m* is the mapping from any state z to the action 7*(z) that
maximizes the Q-values: 7*(z) = maxqeca Q(z,a).

The parameters of the MDP — the probability and the reward functions — are
not perfectly known: all we know is a pdf over their possible values. This uncer-
tainty comes from the limited amount of allocated resources for estimating those
parameters.

Let us choose a specific policy 7 (for example the optimal policy of the MDP with
the most probable parameters). We can estimate the expected loss of using 7 instead
of the true (but unknown) optimal policy 7*. Let us write g = {u;} the set of all
parameters (p and r functions) of a MDP. We assume that we know a probability
distribution function pdf(u;) over their possible values. For a MDP M* defined




by its parameters p, we write p#(y|z,a), r*(z,a), V¥, Q*, and 7 respectively its
transition probabilities, rewards, value function, Q-values, and optimal policy.

1.1 Direct gain optimization

We define the gain J#(z;7) in the MDP M* as the expected sum of discounted
rewards obtained starting from state z and using policy m:

J#(@;m) = B[ 7 r* (zp, (@) |wo = o; 7] @)
k

where the expectation is taken for sequences of states zx — zy41 occurring with
probability p*(zg+1 |zk, 7#(zk)). By definition, the optimal gain in M* is V#(z) =
J#(z; ") which is obtained for the optimal policy 7#. Let V#(z) = J#(z;7) be
the approximate gain obtained for some approximate policy 7 in the same MDP
M*. We define the loss to occur L*(z) from z when one uses the approximate
policy 7 instead of the optimal one 7# in M*:

L*(z) = V¥(z) — Vi(z) (3)

An example of approximate policy 7 would be the optimal policy of the most prob-
able MDP, defined by the most probable parameters p(y|z,a) and 7(z, a).

We also consider the problem of maximizing the global gain from a set of initial
states chosen according to some probability distribution P(z). Accordingly, we
define the global gain of a policy m: J#(w) = > J*(z;7)P(z) and the global
loss L* of using some approximate policy 7 instead of the optimal one w#

L# = JH(x*) — JH(R) = ) L*(z) P(a) (4)

Thus, knowing the pdf over all parameters p we can define the expected global
loss L = E,[LH].

Next, we would like to define what is the contribution of each parameter uncertainty
to this loss, so we know where we should add new resources (thus reducing some
parameters uncertainty) in order to decrease the expected global loss. We would
like to estimate, for each parameter yu;,

E[0L| Add éu units of resource for p;] (5)

1.2 Partial derivative of the loss

In order to quantify (5) we need to be more explicit about the pdf over p. First, we

assume the independence of the parameters p; (considered as random variables).

Suppose that pdf(p;) = N(0,0;) (normal distribution of mean 0 and standard

deviation o). We would like to estimate the variation JL of the expected loss L

when we make a small change of the uncertainty over p; (consequence of adding new

resources), for example when changing the standard deviation of do; in pdf (u;). At
8L

the limit of an infinitesimal variation we obtain the partial derivative o which

when computed for all parameters p;, provides the respective contributions of each
parameter’s uncertainty to the global loss.

Another example is when the pdf () is a uniform distribution of support [—b;, b;].
Then the partial contribution of y;’s uncertainty to the global loss can be expressed
as (—9‘%. More generally, we can define a finite number of characteristic scalar mea-

surements of the pdf uncertainty (for example the entropy or the moments) and




compute the partial derivative of the expected global loss with respect to these co-
efficients. Finally, knowing the actual resources needed to estimate a parameter p;
with some uncertainty defined by pdf (u;), we are able to estimate (5).

1.3 TUnbiased estimator

We sample N sets of parameters {p¢};—;. v from the pdf (1), which define N'MDPs
M. For convenience, we use the superscript * to refer to the i-th MDP sample
and the subscript ; for the j-th parameter of a variable. We solve each MDP using
standard DP techniques (see [5]). This expensive computation that can be speed-up
in two ways: first, by using the value function and policy computed for the first
MDP as initial values for the other MDPs; second, since all MDPs have the same
structure, by computing once for all an efficient ordering (using a topological sort,
possibly with loops) of the states that will be used for value iteration.

For each MDP, we compute the global loss L* of using the policy 7 and estimate
the expected global loss: L ~ & Zf;l Lt. In order to estimate the contribution of
a parameter’s uncertainty to L, we derive the partial derivative of L with respect
to the characteristic coefficients of pdf(u;). In the case of a reward parameter p;
that follows a normal distribution N (0, 0;), we can write p; = 0;€; where &; follows
N(0,1). The partial derivative of the expected loss L with respect to o; is

8L 3 d dL°¢
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from which we deduce the unbiased estimator

OL* p,
BGJ =N Z 7 Op; 0 @

where is the partial derivative of the global loss L of MDP M with respect to

the para.meter p;j (considered as a variable). For other distributions, we can define
similar results to (6) and deduce analogous estimators (for uniform distributions,
we have the same estimator with b; instead of ;).

The remainder of the paper is organized as follow. Section 2 introduces useful tools
to derive the partial contribution of each parameter —transition probability and
reward— to the value function in a Markov Chain, Section 3 establishes the partial
contribution of each parameter to the global loss, allowing to calculate the estimator
(7), and Section 4 provides an efficient algorithm. All proofs are given in the full
length paper [2].

2 Non-local dependencies

2.1 Influence of a markov chain

In [3] we introduced the notion of influence of a Markov Chain as a way to measure
value function/rewards correlations between states. Let us consider a set of values
V satisfying a Bellman equation

V(@) =7Y_ pyln)V(y) +r(=) ®)
Yy
We define the discounted cumulative k-chained transition probabilities py(y|z):

po(yle) = L=y (=1 (if z=1y) or 0 (if z #y))
pi(ylz) = vpylz)




p2(ylo) > p1(ylw) pa(wle)

pe(yle) = D pi(ylw)p-1(wlo)

The influence I(y|z) of a state y on another state z is defined as I(y|z) =
Y reo Pr(y|z). Intuitively, I(y|z) measures the expected discounted number of vis-
its of state y starting from z; it is also the partial derivative of the value function
V(z) with respect to the reward r(y). Indeed V(z) can be expressed as a linear
combination of the rewards at y weighted by the influence I(y|z)

V(e) = I(ylz)r(y) 9)

We can also define the influence of g state y on a function f: I(y|f()) =
> I(ylz) f(:v) and the influence of a function f on another function g
I(f( )Ng()) =32, I(ylg(-)) f(y)- In [3], we showed that the influence satisfies

I(ylz) = 7Y p(ylw)I(w]e) + Loy (10)

which is a fixed-point equation of a contractant operator (in 1—norm) thus has
a unique solution —the influence— that can be computed by successive iterations.
Similarly, the influence I(y|f(-)) can be obtained as limit of the iterations

IYIFO) + 7Y pElw)I(w]f()) + £(¥)

w
Thus the computation of the influence I(y|f(-)) is cheap (equivalent to solving a
Markov chain).

2.2 Total derivative of V

We wish to express the contribution of all parameters — transition probabilities p
and rewards r — (considered as variables) to the value function V by defining the
total derivative of V as a function of those parameters. We recall that the total
derivative of a function f of several variables 1, .., T, is df = g{;dxl + ..+ g%’f;dxn.
We already know that the partial derivative of V' (z) with respect to the reward 7(z)

is the influence I(z|z) = %‘T/((:)). Now, the dependency with respect to the transition

probabilities has to be expressed more carefully because the probabilities p(w|z) for
a given z are dependent (they sum to one). A way to express that is provided in
the theorem that follows whose proof is in [2].

Theorem 1 For a given state z, let us alter the probabilities p(w|z), for all w,
with some dp(w|z) value, such that ) dp(w|z) = 0. Then V(x) is altered by
0V (z) = I(z|z)[y ), V(w)dp(w|2)]. We deduce the total derivative of V':

dV(z) = Y I(z|z)ly Y V(w)dp(wl|2) + dr(z)]
under the constraint ), dp(w|z) =0 for all z.

3 Total derivative of the loss

For a given MDP M with parameters u (for notation simplification we do not
write the p superscript in what follows), we want to estimate the loss of using an
approximate policy 7 instead of the optimal one 7. First, we define the one-step




loss I(z) at a state z as the difference between the gain obtained by choosing the
best action 7(z) then using the optimal policy = and the gain obtained by choosing
action 7(z) then the same optimal policy 7 ;

l(e) = Q(z,(2)) - Qlz,7(x)) (11)

Now we consider the loss L(z), defined by (3), for an initial state z when we use
the approximate policy 7. We can prove that L(z) is the expected discounted
cumulative one-step losses I(zy) for reachable states zj:

L(z) =E[) | v*l(z4)|z0 = 2;7]
k

with the expectation taken in the same sense as in (2).

3.1 Decomposition of the one-step loss

We use (9) to decompose the Q-values

Qz,a) = 7)_p(wlz,a) ) Iylw)r(y, 7(y)) +r(s,a)

r(z,a) + Y a(yle, a)r(y, 7(y))

using the partial contributions ¢(y|z,a) = 7>, p(w|z,a)](y|w) where I(y|lw) is
the influence of y on w in the Markov chain derived from the MDP M by choosing
policy 7. Similarly, we decompose the one-step loss

I(z) = Q(z,7(z)) - Q(z,7())

r(z,m(@)) — (2,7 (@) + Y_ layle, 7(2)) — alylz, 7 (@))] r(y, 7(y))

Il

r(z,m(2)) ~7(2,7(2)) + ) _l(ylo)r(y, 7))

as a function of the partial contributions I(y|z) = q(y|z,7(z)) — q(y|z,7(z)) (see
figure 1).

Figure 1: The reward r(y,n(y)) at

state y contributes to the one-step
loss I(z) = Q(z,m(z)) — Q(z, 7(z))
with the proportion I(y|lz) =
q(ylz, () — a(ylz, 7(z)).




3.2 Total derivative of the one-step loss and global loss

Similarly to section (2.2), we wish to express the contribution of all parameters —
transition probabilities p and rewards r — (considered as variables) to the one-step
loss function by defining the total derivative of | as a function of those parameters.

Theorem 2 Let us introduce the (formal) differential back-up operator dT, de-
fined, for any function W : X — IR, as

dT.W(z) =~ ) _ W(y)dp(y|z,a) + dr(z,a)

(stmilar to the back-up operator (1) but using dp and dr instead of p and r). The
total derivative of the one-step loss is

di(2)=) _U(2|2)dT(eV (2) + dT(o)V (z) — AT,V ()

under the constraint 3_, dp(y|z,a) = 0 for all z and a.

Theorem 3 Let us introduce the one-step-loss back-up operator S and its formal
differential version dS defined, for any function W : X — IR, as

SW(z) = 7> pyle, ()W) + ()

dSW(z) = 7 dp(ylz, (=))W (y) + di(z)

Then, the loss L(z) ot = satisfies Bellman’s equation L = SL. The total derivative
of the loss L(z) and global loss L are, respectively

dL(z) = ) I(z|x)dSL(2)

dL > " I(z|P(-))dSL(z)

I

from which (after regrouping the contribution to each parameter) we deduce the
partial derivatives of the global loss with respect to the rewards and transition
probabilities

oL
W = I(l(zl)lP())]]-azw(a;)_'_I(wIP())(lazw(z)_laz’,}(z))
OL oL
Sp(yz,a) “YI(zlP('))L(y)]la:w(z)+7V(y)m

4 A fast algorithm

We use the sampling technique introduced in section 1.3. In order to compute the
estimator (7) we calculate the partial derivatives %ﬁ—; based on the result of the
previous section, with the following algorithm.

Given the pdf over the parameters p, select a policy 7 (for example the optimal
policy of the most probable MDP). For 7 = 1..N, solve each MDP M* and deduce




its value function V*, Q-values Q*, and optimal policy n*. Deduce the one-step loss
I*(z) from (11). Compute the influence I(z|P(-)) (which depends on the transi-

tion probabilities p* of M*) and the influence I(I*(z|-)|P(-)) from which we deduce

W?(LT‘@T Then calculate Li(z) by solving Bellman’s equation L! = SL! and deduce

W—%' These partial derivatives enable to compute the unbiased estimator (7).

The complexity of solving a discounted MDP with K states, each one connected to
M next states, is O(K M), as is the complexity of computing the influences. Thus,
the overall complexity of this algorithm is O(NKM).

Conclusion’

Being able to compute the contribution of each parameter —transition probabilities
and rewards— to the value function (theorem 1) and to the loss of the expected
rewards to occur if we use an approximate policy (theorem 3) enables us to use
sampling techniques to estimate what are the parameters whose uncertainty are the
most harmful to the expected gain. A relevant resource allocation process would
consider adding new computational resources to reduce uncertainty over the true
value of those parameters. In the examples given in the introduction, this would be
doing new experiments in model-free RL for defining more precisely the transition
probabilities of some relevant states. In discretization techniques for continuous
control problems, this would be adding new grid points in order to improve the
quality of the interpolation at relevant areas of the state space in order to maximize
the expected gain of the new policy. Initial experiments for variable resolution
discretization using random grids show improved performance compared to [3].
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