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Abstract 

The popular K-means clustering partitions a data set by minimiz­
ing a sum-of-squares cost function. A coordinate descend method 
is then used to find local minima. In this paper we show that the 
minimization can be reformulated as a trace maximization problem 
associated with the Gram matrix of the data vectors. Furthermore, 
we show that a relaxed version of the trace maximization problem 
possesses global optimal solutions which can be obtained by com­
puting a partial eigendecomposition of the Gram matrix, and the 
cluster assignment for each data vectors can be found by comput­
ing a pivoted QR decomposition of the eigenvector matrix. As a 
by-product we also derive a lower bound for the minimum of the 
sum-of-squares cost function. 

1 Introduction 

K-means is a very popular method for general clustering [6]. In K-means clusters 
are represented by centers of mass of their members, and it can be shown that the 
K-means algorithm of alternating between assigning cluster membership for each 
data vector to the nearest cluster center and computing the center of each cluster 
as the centroid of its member data vectors is equivalent to finding the minimum of a 
sum-of-squares cost function using coordinate descend. Despite the popularity of K­
means clustering, one of its major drawbacks is that the coordinate descend search 
method is prone to local minima. Much research has been done on computing refined 
initial points and adding explicit constraints to the sum-of-squares cost function for 
K-means clustering so that the search can converge to better local minimum [1 ,2]. 
In this paper we tackle the problem from a different angle: we find an equivalent 
formulation of the sum-of-squares minimization as a trace maximization problem 
with special constraints; relaxing the constraints leads to a maximization problem 



that possesses optimal global solutions. As a by-product we also have an easily 
computable lower bound for the minimum of the sum-of-squares cost function. Our 
work is inspired by [9, 3] where connection to Gram matrix and extension of K­
means method to general Mercer kernels were investigated. 

The rest of the paper is organized as follows: in section 2, we derive the equivalent 
trace maximization formulation and discuss its spectral relaxation. In section 3, we 
discuss how to assign cluster membership using pivoted QR decomposition, taking 
into account the special structure of the partial eigenvector matrix. Finally, in 
section 4, we illustrate the performance of the clustering algorithms using document 
clustering as an example. 

Notation. Throughout , II . II denotes the Euclidean norm of a vector. The trace 
of a matrix A, i.e., the sum of its diagonal elements, is denoted as trace(A). The 
Frobenius norm of a matrix IIAIIF = Jtrace(AT A). In denotes identity matrix of 
order n. 

2 Spectral Relaxation 

Given a set of m-dimensional data vectors ai, i = 1, ... ,n, we form the m-by-n data 
matrix A = [a1,"" an]. A partition II of the date vectors can be written in the 
following form 

(1) 

where E is a permutation matrix, and Ai is m-by-si, i.e., the ith cluster contains 
the data vectors in A. For a given partition II in (1), the associated sum-of-squares 
cost function is defined as 

k Si Si 
ss(II) = L L Ila~i) - mi11 2 , m· = "a(i)ls· 'l ~ S 2, 

i=l s=l s=l 

i.e., mi is the mean vector of the data vectors in cluster i. Let e be a vector 
of appropriate dimension with all elements equal to one, it is easy to see that 
mi = Aiel Si and 

Si 
SSi == L Ila~i) - mil1 2 = IIAi - mieTII} = IIAi(Isi - eeT ISi)II}· 

s=l 

Notice that lSi - eeT I Si is a projection matrix and (Isi - eeT I Si)2 = lSi - eeT lSi, 
it follows that 

SSi = trace(Ai(Isi - eeT I si)Af) = trace((Isi - eeT I si)AT Ai). 

Therefore, 

ss(II) = t, SSi = t, (trace(AT Ai) - (~) AT Ai (~) ) . 

Let the n-by-k orthonormal matrix X be 

X = :~ (e
lVsl 

elVSi. 

Sk 

(2) 



The sum-of-squares cost function can now be written as 

ss(II) = trace(AT A) - trace(XT AT AX), 

and its minimization is equivalent to 

max{ trace(XT AT AX) I X of the form in (2)}. 

REMARK. Without loss of generality, let E = I in (1). If we let Xi be the cluster 
indicator vector, i.e., 

xT = [0, ... ,0,1, ... ,1,0, .. . ,0]. 
'---v-----" 

Si 

Then it is easy to see that 

trace(XT AT AX) = t xT AT AXi = t II Axil1 2 

i=l XTXi i=l IIxil1 2 

Using the partition in (1), the right-hand side of the above can be written as 

a weighted sum of the squared Euclidean norms of the mean vector of each clusters. 

REMARK. If we consider the elements of the Gram matrix AT A as measuring 
similarity between data vectors, then we have shown that Euclidean distance leads 
to Euclidean inner-product similarity. This inner-product can be replaced by a 
general Mercer kernel as is done in [9 , 3]. 

Ignoring the special structure of X and let it be an arbitrary orthonormal matrix, 
we obtain a relaxed maximization problem 

max trace(XT AT AX) 
XTX=h 

It turns out the above trace maximization problem has a closed-form solution. 

Theorem. (Ky Fan) Let H be a symmetric matrix with eigenvalues 

Al ::::: A2 ::::: ... ::::: An, 

and the corresponding eigenvectors U = [Ul, .. . , Un]. Then 

Al + ... Ak = max trace(XT H X) . 
XTX=Ik 

(3) 

Moreover, the optimal X* is given by X* = [Ul' ... ' Uk]Q with Q an arbitrary 
orthogonal matrix. 

It follows from the above theorem that we need to compute the largest k eigenvectors 
of the Gram matrix AT A. As a by-product, we have 

min{m ,n} 

minss(II) ::::: trace(AT A) - max trace(XT AT AX) = L 0-; (A), (4) 
n XT X=h i=k+l 

where oi(A) is the i largest singular value of A. This gives a lower bound for the 
minimum of the sum-of-squares cost function. 



REMARK. It is easy to see from the above derivation that we can replace A with 
A - aeT , where a is an arbitrary vector. Then we have the following lower bound 

min{m,n} 

mJnss(II) ::::: m~ L u;(A - aeT ). 

i=k+l 
REMARK. One might also try the following approach: notice that 

T2 1", '" 2 IIAi - mie IIF = 2Si ~ ~ Ilaj - aj'11 . 
aj EAi aj' EAi 

Let W = ( Ilai - ajl12 )i,j=l' and and Xi = [Xij]j=l with 

1 if aj E Ai 
Xij = { o otherwise 

Then 
k T n 

ss(II) = ~ '" Xi WXi > ~ min ZTWZ = ~ '" Ai(W). 
2 ~ XT Xi - 2 ZT Z=h 2 ~ i=l " i=n-k+l 

Unfortunately, some of the smallest eigenvalues of W can be negative. 

Let X k be the n-by-k matrix consisting of the k largest eigenvectors of AT A. Each 
row of X k corresponds to a data vector , and the above process can be considered as 
transforming the original data vectors which live in a m-dimensional space to new 
data vectors which now live in a k-dimensional space. One might be attempted to 
compute the cluster assignment by applying the ordinary K-means method to those 
data vectors in the reduced dimension space. In the next section, we discuss an 
alternative that takes into account the structure of the eigenvector matrix X k [5]. 

REMARK. The similarity of the projection process to principal component analysis 
is deceiving: the goal here is not to reconstruct the data matrix using a low-rank 
approximation but rather to capture its cluster structure. 

3 Cluster Assignment Using Pivoted QR Decomposition 

Without loss of generality, let us assume that the best partition of the data vec­
tors in A that minimizes ss(II) is given by A = [AI"'" Ak], each submatrix Ai 
corresponding to a cluster. Now write the Gram matrix of A as 

ATA=[A~A' ArA, ~ 1+E=:B+E. 
o 0 ArAk 

If the overlaps among the clusters represented by the submatrices Ai are small, then 
the norm of E will be small as compare with the block diagonal matrix B in the 
above equation. Let the largest eigenvector of AT Ai be Yi , and 

AT AiYi = fJiYi , IIYil1 = 1, i = 1, ... , k, 

then the columns of the matrix 



span an invariant subspace of B. Let the eigenvalues and eigenvectors of AT A be 

A1:::: A2:::: ... :::: An, AT AXi = AiXi, i = 1, ... ,n. 

Assume that there is a gap between the two eigenvalue sets {fl1,'" flk} and 
{Ak+1 , '" An}, i.e. , 

o < J = min{lfli - Aj II i = 1, ... ,k, j = k + 1, ... ,n}. 

Then Davis-Kahan sin(0) theorem states that IlynXk+1,'" ,xn]11 < IIEII/J [11, 
Theorem 3.4]. After some manipulation, it can be shown that 

X k == [Xl, ... , Xk] = Yk V + O(IIEII) , 

where V is an k-by-k orthogonal matrix. Ignoring the O(IIEII) term, we see that 

v v 

cluster 1 cluster k 

where we have used y'[ = [Yil , ... ,Yis.], and VT = [V1' ... ,Vk]. A key observation is 
that all the Vi are orthogonal to each other: once we have selected a Vi, we can jump 
to other clusters by looking at the orthogonal complement of Vi' Also notice that 
IIYil1 = 1, so the elements of Yi can not be all small. A robust implementation of 
the above idea can be obtained as follows: we pick a column of X k T which has the 
lar;est norm, say, it belongs to cluster i , we orthogonalize the rest of the columns of 
X k against this column. For the columns belonging to cluster i the residual vector 
will have small norm, and for the other columns the residual vectors will tend to 
be not small. We then pick another vector with the largest residual norm, and 
orthogonalize the other residual vectors against this residual vector. The process 
can be carried out k steps, and it turns out to be exactly QR decomposition with 
column pivoting applied to X k T [4], i.e., we find a permutation matrix P such that 

X'[P = QR = Q[Rl1,Rd, 

where Q is a k-by-k orthogonal matrix, and Rl1 is a k-by-k upper triangular matrix. 
We then compute the matrix 

R = Rj} [Rl1 ' Rd pT = [Ik' Rj} R12]PT. 

Then the cluster membership of each data vector is determined by the row index of 
the largest element in absolute value of the corresponding column of k 
REMARK. Sometimes it may be advantageous to include more than k eigenvectors 
to form Xs T with s > k. We can still use QR decomposition with column pivoting 
to select k columns of Xs T to form an s-by-k matrix, say X. Then for each column 
z of Xs T we compute the least squares solution of t* = argmintERk li z - Xtll. Then 
the cluster membership of z is determined by the row index of the largest element 
in absolute value of t* . 

4 Experimental Results 

In this section we present our experimental results on clustering a dataset of news­
group articles submitted to 20 newsgroups.1 This dataset contains about 20,000 
articles (email messages) evenly divided among the 20 newsgroups. We list the 
names of the news groups together with the associated group labels. 

lThe newsgroup dataset together with the bow toolkit for processing it can be down­
loadedfrorn http : //www . cs.cmu.edu/afs/cs/project/theo-ll/www/naive-bayes.html. 
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Figure 1: Clustering accuracy for five newsgroups NG2/NG9/NG10/NG15/NG18: 
p-QR vs. p-Kmeans (left) and p-Kmeans vs. Kmeans (right) 

NG1: alt.atheism NG2: comp.graphics 
NG3: comp.os.ms-vindovs.misc NG4: comp.sys.ibm.pc.hardvare 
NG5:comp.sys.mac.hardvare NG6: comp.vindovs.x 
NG7:misc.forsale NG8: rec.autos 
NG9:rec.motorcycles NG10: rec.sport.baseball 
NGll:rec.sport.hockey NG12: sci. crypt 
NG13:sci.electronics NG14: sci.med 
NG15:sci.space NG16: soc.religion.christian 
NG17:talk.politics.guns NG18: talk.politics.mideast 
NG19:talk.politics.misc NG20: talk.religion.misc 

We used the bow toolkit to construct the term-document matrix for this dataset, 
specifically we use the tokenization option so that the UseNet headers are stripped, 
and we also applied stemming [8]. The following three preprocessing steps are done: 
1) we apply the usual tf.idf weighting scheme; 2) we delete words that appear too 
few times; 3) we normalized each document vector to have unit Euclidean length. 

We tested three clustering algorithms: 1) p-QR, this refers to the algorithm using 
the eigenvector matrix followed by pivoted QR decomposition for cluster member­
ship assignment; 2) p-Kmeans, we compute the eigenvector matrix, and then apply 
K-means on the rows of the eigenvector matrix; 3) K-means, this is K-means directly 
applied to the original data vectors. For both K-means methods, we start with a set 
of cluster centers chosen randomly from the (projected) data vectors, and we aslo 
make sure that the same random set is used for both for comparison. To assess the 
quality of a clustering algorithm, we take advantage of the fact that the news group 
data are already labeled and we measure the performance by the accuracy of the 
clustering algorithm against the document category labels [10]. In particular, for a 
k cluster case, we compute a k-by-k confusion matrix C = [Cij] with Cij the number 
of documents in cluster i that belongs to newsgroup category j. It is actually quite 
subtle to compute the accuracy using the confusion matrix because we do not know 
which cluster matches which newsgroup category. An optimal way is to solve the 
following maximization problem 

max{ trace(CP) I P is a permutation matrix}, 

and divide the maximum by the total number of documents to get the accuracy. 
This is equivalent to finding perfect matching a complete weighted bipartite graph, 
one can use Kuhn-Munkres algorithm [7]. In all our experiments, we used a greedy 
algorithm to compute a sub-optimal solution. 



Table 1: Comparison of p-QR, p-Kmeans, and K-means for two-way clustering 

Newsgroups p-QR p-Kmeans K-means 

NG1/NG2 89.29 ± 7.51 % 89.62 ± 6.90% 76.25 ± 13.06% 
NG2/NG3 62.37 ± 8.39% 63.84 ± 8.74% 61.62 ± 8.03% 
NG8/NG9 75.88 ± 8.88% 77.64 ± 9.00% 65.65 ± 9.26% 
NG10/NG11 73.32 ± 9.08% 74.86 ± 8.89% 62.04 ± 8.61% 
NG1/NG15 73.32 ± 9.08% 74.86 ± 8.89% 62 .04 ± 8.61% 
NG18/NG19 63.86 ± 6.09% 64.04 ± 7.23% 63.66 ± 8.48% 

Table 2: Comparison of p-QR, p-Kmeans, and K-means for multi-way clustering 

Newsgroups p-QR p-Kmeans K-means 

NG2/NG3/NG4/NG5/NG6 (50) 40.36 ± 5.17% 41.15 ± 5.73% 35.77 ± 5.19% 
NG2/NG3/NG4/NG5/NG6 UOO) 41.67 ± 5.06% 42.53 ± 5.02% 37.20 ± 4.39% 
NG2/NG9/NG10/NG15/NG18 l50j 77.83 ± 9.26% 70.13 ± 11.67% 58.10 ± 9.60% 
NG2/NG9/NG10/NG15/NG18 (100) 79.91 ± 9.90% 75.56 ± 10.63% 66.37 ± 10.89% 

NG1/NG5/NG7/NG8/NG11/ (50) 60.21 ± 4.88% 58.18 ± 4.41% 40.18 ± 4.64% NG12/NG13/NG14/NG15/NG17 
NG1/NG5/NG7 /NG8/NG 11/ (100) 65.08 ± 5.14% 58.99 ± 5.22% 48.33 ± 5.64% NG12/NG13/NG14/NG15/NG17 

EXAMPLE 1. In this example, we look at binary clustering. We choose 50 random 
document vectors each from two newsgroups. We tested 100 runs for each pair 
of newsgroups, and list the means and standard deviations in Table 1. The two 
clustering algorithms p-QR and p-Kmeans are comparable to each other, and both 
are better and sometimes substantially better t han K-means. 

EXAMPLE 2. In this example, we consider k-way clustering with k = 5 and k = 10. 
Three news group sets are chosen with 50 and 100 random samples from each news­
group as indicated in the parenthesis. Again 100 runs are used for each tests and the 
means and standard deviations are listed in Table 2. Moreover, in Figure 1, we also 
plot the accuracy for the 100 runs for the test NG2/NG9/NG10/NG15/NG18 (50). 
Both p-QR and p-Kmeans perform better than Kmeans. For news group sets with 
small overlaps, p-QR performs better than p-Kmeans. This might be explained by 
the fact that p-QR explores the special structure of the eigenvector matrix and is 
therefore more efficient. As a less thorough comparison wit h the information bottle­
neck method used in [10], there for 15 runs of NG2/NG9/NGlO/NG15/NG18 (100) 
mean accuracy 56.67% with maximum accuracy 67.00% is obtained. For 15 runs 
of the 10 newsgroup set with 50 samples, mean accuracy 35.00% with maximum 
accuracy about 40.00% is obtained. 

EXAMPLE 3. We compare the lower bound given in (4). We only list a typical 
sample from NG2/NG9/NGlO/NG15/NG18 (50). The column with "NG labels" 
indicates clustering using the newsgroup labels and by definition has 100% accuracy. 
It is quite clear that the news group categories are not completely captured by 
the sum-of-squares cost function because p-QR and "NG labels" both have higher 
accuracy but also larger sum-of-squares values. Interestingly, it seems t hat p-QR 
captures some of this information of the newsgroup categories. 

p-QR p-Kmeans K-means NG labels lower bound 
accuracy 86.80% 83.60% 57.60% 100% N/A 

ssm) 224.1110 223.8966 228.8416 224.4040 219.0266 
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